logo

SCIENCE CHINA Chemistry, Volume 64 , Issue 7 : 1235-1241(2021) https://doi.org/10.1007/s11426-021-9998-x

Covalent organic framework nanoparticles for anti-tumor gene therapy

More info
  • ReceivedFeb 4, 2021
  • AcceptedMar 29, 2021
  • PublishedMay 31, 2021

Abstract


Acknowledgment

This work was supported by the National Natural Science Foundation of China (51925305, 51873208, 51520105004, 51833010, 51803210, 51803014), the National Science and Technology Major Projects for Major New Drugs Innovation and Development (2018ZX09711003-012) and Jilin Province Science and Technology Development Program (20180414027GH).


Interest statement

The authors declare no conflict of interest.


Supplement

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Cote AP, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310: 1166-1170 CrossRef ADS Google Scholar

[2] Liao Q, Xu W, Huang X, Ke C, Zhang Q, Xi K, Xie J. Sci China Chem, 2020, 63: 707-714 CrossRef Google Scholar

[3] Xie H, Hao Q, Jin H, Xie S, Sun Z, Ye Y, Zhang C, Wang D, Ji H, Wan LJ. Sci China Chem, 2020, 63: 1306-1314 CrossRef Google Scholar

[4] Fu CF, Zhao C, Zheng Q, Li X, Zhao J, Yang J. Sci China Chem, 2020, 63: 1134-1141 CrossRef Google Scholar

[5] Huo T, Yang Y, Qian M, Jiang H, Du Y, Zhang X, Xie Y, Huang R. Biomaterials, 2020, 260: 120305 CrossRef Google Scholar

[6] Wang D, Zhang Z, Lin L, Liu F, Wang YB, Guo ZP, Li YH, Tian HY, Chen XS. Biomaterials, 2019, 223. Google Scholar

[7] Chen S, Sun TT, Zheng M, Xie ZG. Advanced Functional Materials, 2020. Google Scholar

[8] Toloza EM. Semin Thor Cardiov Surgery, 2005, 17: 205-212 CrossRef Google Scholar

[9] Barzon L, Pacenti M, Boscaro M, Palù G. Expert Opin Biol Ther, 2004, 4: 1225-1239 CrossRef Google Scholar

[10] Zhang XY, Mao L. Gene, 2021, 766: 145113 CrossRef Google Scholar

[11] Luo D, Saltzman WM. Nat Biotechnol, 2000, 18: 33-37 CrossRef Google Scholar

[12] Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D. Nat Biotechnol, 1997, 15: 871-875 CrossRef Google Scholar

[13] Guan X, Guo Z, Lin L, Chen J, Tian H, Chen X. Nano Lett, 2016, 16: 6823-6831 CrossRef ADS Google Scholar

[14] Xia J, Tian H, Chen J, Guo Z, Lin L, Yang H, Feng Z. Chin J Polym Sci, 2016, 34: 316-323 CrossRef Google Scholar

[15] Lin L, Guo ZP, Chen J, Tian HY, Chen XS. Acta Polym Sin, 2017, 2: 321–328. Google Scholar

[16] Xu CN, Tian HY, Wang YB, Du Y, Chen J, Lin L, Guo ZP, Chen XS. Chin Chem Lett, 2017, 28: 807-812 CrossRef Google Scholar

[17] Fang H, Guo Z, Lin L, Chen J, Sun P, Wu J, Xu C, Tian H, Chen X. J Am Chem Soc, 2018, 140: 11992-12000 CrossRef Google Scholar

[18] Xu C, Tian H, Chen X. Sci China Chem, 2017, 60: 319-328 CrossRef Google Scholar

[19] Mao HQ, Roy K, Troung-Le VL, Janes KA, Lin KY, Wang Y, August JT, Leong KW. J Control Release, 2001, 70: 399-421 CrossRef Google Scholar

[20] He C, Wang M, Sun X, Zhu Y, Zhou X, Xiao S, Zhang Q, Liu F, Yu Y, Liang H, Zou G. Biosens Bioelectron, 2019, 129: 50-57 CrossRef Google Scholar

[21] Peng S, Bie B, Sun Y, Liu M, Cong HJ, Zhou WT, Xia YC, Tang H, Deng HX, Zhou X. Nat Commun, 2018, 9: 1293. Google Scholar

[22] Zhao Y, Guo L, Gándara F, Ma Y, Liu Z, Zhu C, Lyu H, Trickett CA, Kapustin EA, Terasaki O, Yaghi OM. J Am Chem Soc, 2017, 139: 13166-13172 CrossRef Google Scholar

[23] Chuard N, Gasparini G, Moreau D, Lörcher S, Palivan C, Meier W, Sakai N, Matile S. Angew Chem Int Ed, 2017, 56: 2947-2950 CrossRef Google Scholar

[24] Lv S, Wu Y, Cai K, He H, Li Y, Lan M, Chen X, Cheng J, Yin L. J Am Chem Soc, 2018, 140: 1235-1238 CrossRef Google Scholar

  • Scheme 1

    Schematic diagram of the construction of CLZU nanoparticles and their application for anti-tumor gene therapy (color online).

  • Figure 1

    Characterization of CLZU NPs. (a) XRD of LZU-1, LZU-PEI1.8K and LZU-Cys. The input of PEI and cystamine accounts for 10% of all monomers. (b) N2 adsorption isotherms of LZU-1, LZU-PEI1.8K and LZU-Cys. (c) The size distribution of different LZU NPs. (d) Zeta potential of LZU-1, LZU-PEI1.8K and LZU-Cys. SEM images of (e) LZU-PEI1.8K and (f) LZU-Cys (color online).

  • Figure 2

    CLSM images of B16F10 cells treated with PBS, LZU-Cys/LDB/Cy5-DNA. Scale bar: 20 μm (color online).

  • Figure 3

    Luciferase plasmid DNA transfection of LZU-1 (a), CLZU (LZU-PEI1.8K (b) and LZU-Cys (c)) mixed with LDB in different proportions in B16F10 cells. The different colors represent different mass ratios of mixed CLZU and DNA for transfection experiments. (d) GFP plasmid DNA transfection of PEI25K, LZU-1/LDB, LZU-PEI1.8K/LDB, and LZU-Cys/LDB. Scale bar: 20 μm (color online).

  • Figure 4

    Antitumor effect of LZU-Cys NPs in vivo. (a) Treatment schedule for 4T1 tumor-bearing mice. (b) Relative tumor volume and tumor photo of PBS, shVEGF, LZU-Cys/LDB, LZU-Cys/LDB/shVEGF groups. (c) Tumor weight and (d) body weight of mice in different treatment groups. ***, p<0.001; **, p<0.01 (color online).

qqqq

Contact and support