logo

SCIENCE CHINA Chemistry, Volume 64 , Issue 8 : 1367-1371(2021) https://doi.org/10.1007/s11426-021-9992-2

Palladium-catalyzed asymmetric carbamoyl-carbonylation of alkenes

More info
  • ReceivedFeb 27, 2021
  • AcceptedMar 26, 2021
  • PublishedMay 31, 2021

Abstract


Funded by

the National Natural Science Foundation of China(22071267)

the Open Project of State Key Laboratory of Natural Medicines(SKLNMZZ202023)

the Innovation Team of “the Double-First Class” Disciplines(CPU2018GY35)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (22071267), the Open Project of State Key Laboratory of Natural Medicines (SKLNMZZ202023) and the Innovation Team of “the Double-First Class” Disciplines (CPU2018GY35).


Interest statement

The authors declare no conflict of interest.


Supplement

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Yin Z, Xu JX, Wu XF, Peng JB, Chen Z, Wang LC, Wu XF, Peng JB, Geng HQ, Wu XF, Peng JB, Wu XF, Wu XF, Fang X, Wu L, Jackstell R, Neumann H, Beller M, Wu XF, Neumann H, Beller M, Brennführer A, Neumann H, Beller M, Sumino S, Fusano A, Fukuyama T, Ryu I, Wu L, Liu Q, Jackstell R, Beller M, Liu J, Yang J, Baumann W, Jackstell R, Beller M, Yang J, Liu J, Neumann H, Franke R, Jackstell R, Beller M, Qi X, Yu F, Chen P, Liu G, Li M, Yu F, Qi X, Chen P, Liu G. ACS Catal, 2020, 10: 6510-6531 CrossRef Google Scholar

[2] Ma K, Martin BS, Yin X, Dai M, Bai Y, Davis DC, Dai M, Han A, Tao Y, Reisman SE, Xu L, Wang C, Gao Z, Zhao YM, Ma K, Yin X, Dai M, Bai Y, Shen X, Li Y, Dai M, Ebner C, Carreira EM, Shvartsbart A, Smith Iii AB, Jiao L, Yuan C, Yu ZX. Nat Prod Rep, 2019, 36: 174-219 CrossRef Google Scholar

[3] Alper H, Hamel N, You C, Li S, Li X, Lan J, Yang Y, Chung LW, Lv H, Zhang X, Yuan Y, Wu F, Schünemann C, Holz J, Kamer PCJ, Wu X, Wu FP, Holz J, Yuan Y, Wu XF, Yao YH, Yang HY, Chen M, Wu F, Xu XX, Guan ZH. J Am Chem Soc, 1990, 112: 2803-2804 CrossRef Google Scholar

[4] Carmona RC, Köster OD, Correia CRD, Hu H, Teng F, Liu J, Hu W, Luo S, Zhu Q, Chen M, Wang X, Yang P, Kou X, Ren ZH, Guan ZH, Yuan Z, Zeng Y, Feng Z, Guan Z, Lin A, Yao H. Angew Chem Int Ed, 2018, 57: 12067-12070 CrossRef Google Scholar

[5] Tour JM, Negishi E, Copéret C, Ma S, Negishi E, Negishi E, Copéret C, Ma S, Mita T, Sugihara T, Tour JM, Negishi E, Ma S, Amanfu J, Copéret C, Miller JA, Tour JM, Olivieri D, Tarroni R, Della Ca' N, Mancuso R, Gabriele B, Spadoni G, Carfagna C, Ukaji Y, Miyamoto M, Mikuni M, Takeuchi S, Inomata K, Carfagna C, Gatti G, Mosca L, Natanti P, Paoli P, Rossi P, Gabriele B, Salerno G, Liang B, Liu J, Gao YX, Wongkhan K, Shu DX, Lan Y, Li A, Batsanov AS, Howard JAH, Marder TB, Chen JH, Yang Z, Gao Y, Chang L, Shi H, Liang B, Wongkhan K, Chaiyaveij D, Batsanov A, Marder T, Li C, Yang Z, Huang Y. J Am Chem Soc, 1985, 107: 8289-8291 CrossRef Google Scholar

[6] Yasui Y, Kamisaki H, Takemoto Y, Yasui Y, Kamisaki H, Ishida T, Takemoto Y. Org Lett, 2008, 10: 3303-3306 CrossRef Google Scholar

[7] Wu X, Qu J, Chen Y. J Am Chem Soc, 2020, 142: 15654-15660 CrossRef Google Scholar

[8] Marchese AD, Wollenburg M, Mirabi B, Abel-Snape X, Whyte A, Glorius F, Lautens M. ACS Catal, 2020, 10: 4780-4785 CrossRef Google Scholar

[9] Lan Y, Wang C. Commun Chem, 2020, 3: 45-53 CrossRef Google Scholar

[10] Li Y, Zhang FP, Wang RH, Qi SL, Luan YX, Ye M. J Am Chem Soc, 2020, 142: 19844-19849 CrossRef Google Scholar

[11] Fan P, Lan Y, Zhang C, Wang C. J Am Chem Soc, 2020, 142: 2180-2186 CrossRef Google Scholar

[12] Matsuura T, Overman LE, Poon DJ, Takano S, Moriya M, Ogasawara K, Brossi A, Yu Q, Luo W, Li Y, Luo W, Yu Q, Kulkarni SS, Parrish DA, Holloway HW, Tweedie D, Shafferman A, Lahiri DK, Brossi A, Greig NH. J Am Chem Soc, 1998, 120: 6500-6503 CrossRef Google Scholar

[13] Singh GS, Desta ZY, Kaur M, Singh M, Chadha N, Silakari O, Pandey G, Mishra A, Khamrai J. Chem Rev, 2012, 112: 6104-6155 CrossRef Google Scholar

  • Scheme 1

    Transition-metal catalyzed bicarbonylation reaction of alkenes with CO (color online).

  • Scheme 2

    Substrate scope for the synthesis of oxindoles (color online).

  • Scheme 3

    Substrate scope for the synthesis of γ-lactams (color online).

  • Scheme 4

    Further study of the reaction (color online).

  • Table 1   Optimization of reaction conditions (color online)

    Entry a)

    Variation of standard conditions

    Yield (%) b)

    3a:4a:5a

    er of 3a c)

    1

    none

    95:0:0

    96.5:3.5

    2

    L2 instead of L1

    39:12:14

    93:7

    3

    L3 instead of L1

    90:0:0

    78:22

    4

    L4 instead of L1

    60:12:<5

    84.5:15.5

    5

    L5 instead of L1

    45:32:<5

    61:39

    6

    L6 instead of L1

    n.d.d)

    n.d.d)

    7

    PhCl instead of PhCl:acetone (9:1)

    87:0:0

    95.5:4.5

    8

    acetone instead of PhCl:acetone (9:1)

    90:0:0

    93.5:6.5

    9

    MTBE instead of PhCl:acetone (9:1)

    85:0:<5

    82.5:17.5

    10

    CH2Cl2 instead of PhCl:acetone (9:1)

    27:<5:35

    52:48

    11

    KH2PO4 instead of K2HPO4

    16:<5:<5

    95.5:4.5

    12

    Cs2CO3 instead of K2HPO4

    8:0:72

    95:5

    Reaction conditions: 1a (0.1 mmol), 2a (0.3 mmol), Pd(OAc)2(5 mol%), L (10 mol%), K2HPO4 (0.3 mmol) in 1.0 mL solvent, 80 °C (oil bath temperature), 30 h, CO balloon. b) Isolated yields. c) Determined by HPLC analysis. d) Not determined.

qqqq

Contact and support