logo

SCIENCE CHINA Chemistry, Volume 64 , Issue 7 : 1219-1227(2021) https://doi.org/10.1007/s11426-021-9991-0

Low-bandgap conjugated polymers based on benzodipyrrolidone with reliable unipolar electron mobility exceeding 1 cm2 V−1 s−1

More info
  • ReceivedJan 22, 2021
  • AcceptedMar 23, 2021
  • PublishedMay 20, 2021

Abstract


Funded by

the Ministry of Science and Technology of China(2017YFA0206600,2019YFA0705900)

the National Natural Science Foundation of China(21875072,21774093)

and the Fundamental Research Funds for Central Universities(South,China,University,of,Technology,D2190310)

Guangdong Innovative and Entrepreneurial Research Team Program(2019ZT08L075)

and the Open Funds of State Key Laboratory of Fine Chemicals(KF1901)


Acknowledgment

This work was supported by the Ministry of Science and Technology of China (2017YFA0206600, 2019YFA0705900), the National Natural Science Foundation of China (21875072, 21774093), and the Fundamental Research Funds for Central Universities (South China University of Technology, D2190310), Guangdong Innovative and Entrepreneurial Research Team Program (2019ZT08L075), and the Open Funds of State Key Laboratory of Fine Chemicals (KF1901).


Interest statement

The authors declare no conflict of interest.


Contributions statement

These authors contributed equally to this work.


Supplement

Supporting Information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Holliday S, Li Y, Luscombe CK. Prog Polym Sci, 2017, 70: 34-51 CrossRef Google Scholar

[2] Anantha-Iyengar G, Shanmugasundaram K, Nallal M, Lee KP, Whitcombe MJ, Lakshmi D, Sai-Anand G. Prog Polym Sci, 2019, 88: 1-129 CrossRef Google Scholar

[3] Dai C, Liu B. Energy Environ Sci, 2020, 13: 24-52 CrossRef Google Scholar

[4] Li H, Shi W, Song J, Jang HJ, Dailey J, Yu J, Katz HE. Chem Rev, 2019, 119: 3-35 CrossRef Google Scholar

[5] Paterson AF, Singh S, Fallon KJ, Hodsden T, Han Y, Schroeder BC, Bronstein H, Heeney M, McCulloch I, Anthopoulos TD. Adv Mater, 2018, 30: 1801079 CrossRef PubMed Google Scholar

[6] Shi K, Zhang W, Gao D, Zhang S, Lin Z, Zou Y, Wang L, Yu G. Adv Mater, 2018, 30: 1705286 CrossRef PubMed Google Scholar

[7] Yi Z, Jiang Y, Xu L, Zhong C, Yang J, Wang Q, Xiao J, Liao X, Wang S, Guo Y, Hu W, Liu Y. Adv Mater, 2018, 30: 1801951 CrossRef PubMed Google Scholar

[8] Bronstein H, Nielsen CB, Schroeder BC, McCulloch I. Nat Rev Chem, 2020, 4: 66-77 CrossRef Google Scholar

[9] Wang Y, Hasegawa T, Matsumoto H, Michinobu T. Angew Chem Int Ed, 2019, 58: 11893-11902 CrossRef PubMed Google Scholar

[10] Shi Y, Guo H, Huang J, Zhang X, Wu Z, Yang K, Zhang Y, Feng K, Woo HY, Ortiz RP, Zhou M, Guo X. Angew Chem Int Ed, 2020, 59: 14449-14457 CrossRef PubMed Google Scholar

[11] Zhao Z, Yin Z, Chen H, Zheng L, Zhu C, Zhang L, Tan S, Wang H, Guo Y, Tang Q, Liu Y. Adv Mater, 2017, 29: 1602410 CrossRef PubMed Google Scholar

[12] Wang Y, Hasegawa T, Matsumoto H, Mori T, Michinobu T. Adv Mater, 2018, 30: 1707164 CrossRef PubMed Google Scholar

[13] Zhu C, Zhao Z, Chen H, Zheng L, Li X, Chen J, Sun Y, Liu F, Guo Y, Liu Y. J Am Chem Soc, 2017, 139: 17735-17738 CrossRef PubMed Google Scholar

[14] Yang J, Wang H, Chen J, Huang J, Jiang Y, Zhang J, Shi L, Sun Y, Wei Z, Yu G, Guo Y, Wang S, Liu Y. Adv Mater, 2017, 29: 1606162 CrossRef PubMed Google Scholar

[15] Zhang A, Xiao C, Wu Y, Li C, Ji Y, Li L, Hu W, Wang Z, Ma W, Li W. Macromolecules, 2016, 49: 6431-6438 CrossRef ADS Google Scholar

[16] Yao J, Yu C, Liu Z, Luo H, Yang Y, Zhang G, Zhang D. J Am Chem Soc, 2016, 138: 173-185 CrossRef PubMed Google Scholar

[17] Jeon S, Sun C, Yu SH, Kwon SK, Chung DS, Jeong YJ, Kim YH. ACS Appl Mater Interfaces, 2020, 12: 2743-2752 CrossRef PubMed Google Scholar

[18] Guo K, Bai J, Jiang Y, Wang Z, Sui Y, Deng Y, Han Y, Tian H, Geng Y. Adv Funct Mater, 2018, 28: 1801097 CrossRef Google Scholar

[19] Gao Y, Bai J, Sui Y, Han Y, Deng Y, Tian H, Geng Y, Wang F. Macromolecules, 2018, 51: 8752-8760 CrossRef ADS Google Scholar

[20] Liu Q, Kumagai S, Manzhos S, Chen Y, Angunawela I, Nahid MM, Feron K, Bottle SE, Bell J, Ade H, Takeya J, Sonar P. Adv Funct Mater, 2020, 30: 2000489 CrossRef Google Scholar

[21] Bérubé N, Gaudreau J, Côté M. Macromolecules, 2013, 46: 6873–6880. Google Scholar

[22] Zeng Z, Shi X, Chi C, López Navarrete JT, Casado J, Wu J. Chem Soc Rev, 2015, 44: 6578-6596 CrossRef PubMed Google Scholar

[23] Mikie T, Osaka I. J Mater Chem C, 2020, 8: 14262-14288 CrossRef Google Scholar

[24] Burrezo PM, Zafra JL, López Navarrete JT, Casado J. Angew Chem Int Ed, 2017, 56: 2250-2259 CrossRef PubMed Google Scholar

[25] Sun Z, Zeng Z, Wu J. Acc Chem Res, 2014, 47: 2582-2591 CrossRef PubMed Google Scholar

[26] Deng Y, Sun B, He Y, Quinn J, Guo C, Li Y. Angew Chem Int Ed, 2016, 55: 3459-3462 CrossRef PubMed Google Scholar

[27] Kang B, Kim R, Lee SB, Kwon SK, Kim YH, Cho K. J Am Chem Soc, 2016, 138: 3679-3686 CrossRef PubMed Google Scholar

[28] Wang Y, Hasegawa T, Matsumoto H, Michinobu T. J Am Chem Soc, 2019, 141: 3566-3575 CrossRef PubMed Google Scholar

[29] Zhang L, Wang Z, Duan C, Wang Z, Deng Y, Xu J, Huang F, Cao Y. Chem Mater, 2018, 30: 8343-8351 CrossRef Google Scholar

[30] Shi Y, Guo H, Qin M, Wang Y, Zhao J, Sun H, Wang H, Wang Y, Zhou X, Facchetti A, Lu X, Zhou M, Guo X. Chem Mater, 2018, 30: 7988-8001 CrossRef Google Scholar

[31] Wang Y, Guo H, Harbuzaru A, Uddin MA, Arrechea-Marcos I, Ling S, Yu J, Tang Y, Sun H, López Navarrete JT, Ortiz RP, Woo HY, Guo X. J Am Chem Soc, 2018, 140: 6095-6108 CrossRef PubMed Google Scholar

[32] Lei T, Dou JH, Cao XY, Wang JY, Pei J. Adv Mater, 2013, 25: 6589-6593 CrossRef PubMed Google Scholar

[33] Lei T, Dou JH, Cao XY, Wang JY, Pei J. J Am Chem Soc, 2013, 135: 12168-12171 CrossRef PubMed Google Scholar

[34] Dai YZ, Ai N, Lu Y, Zheng YQ, Dou JH, Shi K, Lei T, Wang JY, Pei J. Chem Sci, 2016, 7: 5753-5757 CrossRef PubMed Google Scholar

[35] Yue W, Nikolka M, Xiao M, Sadhanala A, Nielsen CB, White AJP, Chen HY, Onwubiko A, Sirringhaus H, McCulloch I. J Mater Chem C, 2016, 4: 9704-9710 CrossRef Google Scholar

[36] Yao ZF, Wang ZY, Wu HT, Lu Y, Li QY, Zou L, Wang JY, Pei J. Angew Chem Int Ed, 2020, 59: 17467-17471 CrossRef PubMed Google Scholar

[37] Yamamoto K, Ie Y, Nitani M, Tohnai N, Kakiuchi F, Zhang K, Pisula W, Asadi K, Blom PWM, Aso Y. J Mater Chem C, 2018, 6: 7493-7500 CrossRef Google Scholar

[38] Wang C, Ren X, Xu C, Fu B, Wang R, Zhang X, Li R, Li H, Dong H, Zhen Y, Lei S, Jiang L, Hu W. Adv Mater, 2018, 30: 1706260 CrossRef PubMed Google Scholar

[39] Cui W, Yuen J, Wudl F. Macromolecules, 2011, 44: 7869-7873 CrossRef ADS Google Scholar

[40] Hong W, Sun B, Guo C, Yuen J, Li Y, Lu S, Huang C, Facchetti A. Chem Commun, 2013, 49: 484-486 CrossRef PubMed Google Scholar

[41] Kawabata K, Saito M, Osaka I, Takimiya K. J Am Chem Soc, 2016, 138: 7725-7732 CrossRef PubMed Google Scholar

[42] Deng Y, Quinn J, Sun B, He Y, Ellard J, Li Y. RSC Adv, 2016, 6: 34849-34854 CrossRef ADS Google Scholar

[43] Kim Y, Hwang H, Kim NK, Hwang K, Park JJ, Shin GI, Kim DY. Adv Mater, 2018, 30: 1706557 CrossRef PubMed Google Scholar

[44] Zhang H, Yang K, Chen YM, Bhatta R, Tsige M, Cheng SZD, Zhu Y. Macromol Chem Phys, 2017, 218: 1600617 CrossRef Google Scholar

[45] Liu X, He B, Anderson CL, Kang J, Chen T, Chen J, Feng S, Zhang L, Kolaczkowski MA, Teat SJ, Brady MA, Zhu C, Wang LW, Chen J, Liu Y. J Am Chem Soc, 2017, 139: 8355-8363 CrossRef PubMed Google Scholar

[46] Cui W, Wudl F. Macromolecules, 2013, 46: 7232-7238 CrossRef ADS Google Scholar

[47] Zhang C, Zhu X. Adv Funct Mater, 2020, 30: 2000765 CrossRef Google Scholar

[48] Gao R, Wu B, Liang Z, Zhao X, Deng Y, Tian HK, Geng Y. Mater Chem Front, 2020, 4: 891-898 CrossRef Google Scholar

[49] Zhang C, Zang Y, Zhang F, Diao Y, McNeill CR, Di CA, Zhu X, Zhu D. Adv Mater, 2016, 28: 8456-8462 CrossRef PubMed Google Scholar

[50] Xiong Y, Tao J, Wang R, Qiao X, Yang X, Wang D, Wu H, Li H. Adv Mater, 2016, 28: 5949-5953 CrossRef PubMed Google Scholar

[51] Du T, Gao R, Deng Y, Wang C, Zhou Q, Geng Y. Angew Chem Int Ed, 2020, 59: 221-225 CrossRef PubMed Google Scholar

[52] Park JH, Jung EH, Jung JW, Jo WH. Adv Mater, 2013, 25: 2583-2588 CrossRef PubMed Google Scholar

[53] Kim HS, Huseynova G, Noh YY, Hwang DH. Macromolecules, 2017, 50: 7550-7558 CrossRef ADS Google Scholar

[54] Yang CY, Jin WL, Wang J, Ding YF, Nong S, Shi K, Lu Y, Dai YZ, Zhuang FD, Lei T, Di CA, Zhu D, Wang JY, Pei J. Adv Mater, 2018, 30: 1802850 CrossRef PubMed Google Scholar

[55] Gao Y, Deng Y, Tian H, Zhang J, Yan D, Geng Y, Wang F. Adv Mater, 2017, 29: 1606217 CrossRef PubMed Google Scholar

[56] Zhang B, Yu Y, Zhou J, Wang Z, Tang H, Xie S, Xie Z, Hu L, Yip H‐, Ye L, Ade H, Liu Z, He Z, Duan C, Huang F, Cao Y. Adv Energy Mater, 2020, 10: 1904247 CrossRef Google Scholar

[57] Sui Y, Deng Y, Han Y, Zhang J, Hu W, Geng Y. J Mater Chem C, 2018, 6: 12896-12903 CrossRef Google Scholar

[58] Huang H, Yang L, Facchetti A, Marks TJ. Chem Rev, 2017, 117: 10291-10318 CrossRef PubMed Google Scholar

[59] Nicolai HT, Kuik M, Wetzelaer GAH, de Boer B, Campbell C, Risko C, Brédas JL, Blom PWM. Nat Mater, 2012, 11: 882-887 CrossRef PubMed ADS Google Scholar

[60] Lu T, Chen F. J Comput Chem, 2012, 33: 580-592 CrossRef PubMed Google Scholar

[61] Yu ZP, Liu ZX, Chen FX, Qin R, Lau TK, Yin JL, Kong X, Lu X, Shi M, Li CZ, Chen H. Nat Commun, 2019, 10: 2152 CrossRef PubMed ADS Google Scholar

[62] Li S, Zhan L, Liu F, Ren J, Shi M, Li CZ, Russell TP, Chen H. Adv Mater, 2018, 30: 1705208 CrossRef PubMed Google Scholar

[63] Feng S, Li M, Tang N, Wang X, Huang H, Ran G, Liu Y, Xie Z, Zhang W, Bo Z. ACS Appl Mater Interfaces, 2020, 12: 4638-4648 CrossRef PubMed Google Scholar

[64] Chen Z, Lee MJ, Shahid Ashraf R, Gu Y, Albert-Seifried S, Meedom Nielsen M, Schroeder B, Anthopoulos TD, Heeney M, McCulloch I, Sirringhaus H. Adv Mater, 2012, 24: 647-652 CrossRef PubMed Google Scholar

[65] Bai J, Jiang Y, Wang Z, Sui Y, Deng Y, Han Y, Geng Y. Adv Electron Mater, 2020, 6: 1901002 CrossRef Google Scholar

[66] Sun B, Hong W, Thibau ES, Aziz H, Lu ZH, Li Y. ACS Appl Mater Interfaces, 2015, 7: 18662-18671 CrossRef PubMed Google Scholar

[67] Sun B, Hong W, Guo C, Sutty S, Aziz H, Li Y. Org Electron, 2016, 37: 190-196 CrossRef Google Scholar

[68] Choi HH, Cho K, Frisbie CD, Sirringhaus H, Podzorov V. Nat Mater, 2017, 17: 2-7 CrossRef PubMed ADS Google Scholar

[69] Park S, Lee MH, Ahn KS, Choi HH, Shin J, Xu J, Mei J, Cho K, Bao Z, Lee DR, Kang MS, Kim DH. Adv Funct Mater, 2016, 26: 4627-4634 CrossRef Google Scholar

[70] Song H, Deng Y, Gao Y, Jiang Y, Tian H, Yan D, Geng Y, Wang F. Macromolecules, 2017, 50: 2344-2353 CrossRef ADS Google Scholar

[71] Wang Y, Parkin SR, Gierschner J, Watson MD. Org Lett, 2008, 10: 3307-3310 CrossRef PubMed Google Scholar

[72] Nielsen CB, White AJP, McCulloch I. J Org Chem, 2015, 80: 5045-5048 CrossRef PubMed Google Scholar

[73] Wang Y, Hasegawa T, Matsumoto H, Mori T, Michinobu T. Adv Funct Mater, 2017, 27: 1701486 CrossRef Google Scholar

[74] Wang Y, Hasegawa T, Matsumoto H, Mori T, Michinobu T. Adv Funct Mater, 2017, 27: 1604608 CrossRef Google Scholar

  • Figure 1

    (a) DSC traces, (b) UV-Vis-NIR absorption spectra in thin films and dilute CB solutions, and (c) energy levels of PBDP-2F and PBDP-2CN (color online).

  • Scheme 1

    The chemical structure of representative intrinsic quinoidal building blocks with aromatic rings at the termini (color online).

  • Figure 2

    The frontier molecular orbitals and energy-minimized conformation of PBDP-2F and PBDP-2CN calculated by Gaussian 09 at B3LYP/6-31G (d, p) level on three repeating units of the polymers (color online).

  • Scheme 2

    (a) The chemical structures of PBDP-2F and PBDP-2CN. (b) The device structure of TGBC OFETs. (c) Plot of μe versus Eg of conjugated polymers for n-type OFETs. The corresponding source references for the data points are provided in Table S1 (Supporting Information online) (color online).

  • Figure 3

    Representative transfer (a, d) and output (b, e) characteristics and mobility versus gate voltage (c, f) of the OFETs based on PBDP-2F (a–c) and PBDP-2CN (d–f). The devices were annealed at 250 °C and modified with 0.04 wt% PEIE (color online).

  • Scheme 3

    The synthetic routes of PBDP-2F and PBDP-2CN.

  • Figure 4

    Microstructures and morphology of the thin films of PBDP-2F and PBDP-2CN after annealing at 250 °C. (a) 2D-GIWAXS patterns; (b) 1D-GIWAXS line-profiles; (c) AFM height images; (d) schematic pictures of the molecular orientation (color online).

  • Table 1   The molecular weights, thermal, optical, and electrochemical properties of PBDP-2F and PBDP-2CN

    Polymer

    Mn (kDa)

    ĐM

    Tm (°C)

    Tc (°C)

    Egopt a) (eV)

    HOMO (eV)

    LUMO (eV)

    PBDP-2F

    26.0

    3.2

    252

    326

    1.11

    −5.28

    −3.88

    PBDP-2CN

    20.6

    2.4

    281

    333

    1.21

    −5.49

    −4.07

    Egopt is calculated from Egopt = 1240/λonset, film, where λonset, film is the absorption onset of the polymer.

  • Table 2   The performance of the optimized OFET devices of PBDP-2F and PBDP-2CN a)

    Polymer

    μmaxb)(cm2 V−1 s−1)

    μavec)(cm2 V−1 s−1)

    Vth d) (V)

    Ion/Ioff e)

    r (%) f)

    PBDP-2F

    0.58

    0.51

    4−8

    104

    85.7

    PBDP-2CN

    1.01

    0.78

    8−10

    104

    82.5

    The devices were measured in ambient conditions; b) maximum electron mobility calculated from the saturation regime; c) average electron mobility calculated from at least 10 devices; d) threshold voltage; e) current on/off ratio; f) reliability factor calculated according to literature [68].

qqqq

Contact and support