logo

SCIENCE CHINA Chemistry, Volume 64 , Issue 6 : 1031-1038(2021) https://doi.org/10.1007/s11426-021-9988-6

Non-equivalent D-A copolymerization strategy towards highly efficient polymer donor for polymer solar cells

More info
  • ReceivedMar 17, 2021
  • AcceptedMar 18, 2021
  • PublishedApr 25, 2021

Abstract


Funded by

the National Key Research and Development Program of China(2019YFA0705900)

the National Natural Science Foundation of China(51820105003,21734008,61904181)

and the Guangdong Major Project of Basic and Applied Basic Research(2019B030302007)


Acknowledgment

This work was supported by the National Key Research and Development Program of China (2019YFA0705900) funded by MOST, the National Natural Science Foundation of China (51820105003, 21734008, 61904181), and the Guangdong Major Project of Basic and Applied Basic Research (2019B030302007). Part of this work was performed at SAXS/WAXS beamline at the Australian Synchrotron.


Interest statement

The authors declare no conflict of interest.


Contributions statement

The authors contributed equally to this work.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Duan L, Qiao J, Sun Y, Qiu Y. Adv Mater, 2011, 23: 1137-1144 CrossRef PubMed Google Scholar

[2] Yao L, Zhang S, Wang R, Li W, Shen F, Yang B, Ma Y. Angew Chem Int Ed, 2014, 53: 2119-2123 CrossRef PubMed Google Scholar

[3] Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492: 234-238 CrossRef PubMed ADS Google Scholar

[4] Günes S, Neugebauer H, Sariciftci NS. Chem Rev, 2007, 107: 1324-1338 CrossRef PubMed Google Scholar

[5] Li Y. Acc Chem Res, 2012, 45: 723-733 CrossRef PubMed Google Scholar

[6] Li G, Zhu R, Yang Y. Nat Photon, 2012, 6: 153-161 CrossRef ADS Google Scholar

[7] Cheng YJ, Yang SH, Hsu CS. Chem Rev, 2009, 109: 5868-5923 CrossRef PubMed Google Scholar

[8] Liu C, Wang K, Gong X, Heeger AJ. Chem Soc Rev, 2016, 45: 4825-4846 CrossRef PubMed Google Scholar

[9] Cai Y, Huo L, Sun Y. Adv Mater, 2017, 29: 1605437 CrossRef PubMed Google Scholar

[10] Bian L, Zhu E, Tang J, Tang W, Zhang F. Prog Polym Sci, 2012, 37: 1292-1331 CrossRef Google Scholar

[11] Cui C, Li Y. Energy Environ Sci, 2019, 12: 3225-3246 CrossRef Google Scholar

[12] Wei Q, Liu W, Leclerc M, Yuan J, Chen H, Zou Y. Sci China Chem, 2020, 63: 1352-1366 CrossRef Google Scholar

[13] Bürgi L, Turbiez M, Pfeiffer R, Bienewald F, Kirner HJ, Winnewisser C. Adv Mater, 2008, 20: 2217-2224 CrossRef Google Scholar

[14] Guo X, Ortiz RP, Zheng Y, Hu Y, Noh YY, Baeg KJ, Facchetti A, Marks TJ. J Am Chem Soc, 2011, 133: 1405-1418 CrossRef PubMed Google Scholar

[15] Kim DH, Lee BL, Moon H, Kang HM, Jeong EJ, Park JI, Han KM, Lee S, Yoo BW, Koo BW, Kim JY, Lee WH, Cho K, Becerril HA, Bao Z. J Am Chem Soc, 2009, 131: 6124-6132 CrossRef PubMed Google Scholar

[16] Sun C, Pan F, Chen S, Wang R, Sun R, Shang Z, Qiu B, Min J, Lv M, Meng L, Zhang C, Xiao M, Yang C, Li Y. Adv Mater, 2019, 31: 1905480 CrossRef PubMed Google Scholar

[17] Fan B, Du X, Liu F, Zhong W, Ying L, Xie R, Tang X, An K, Xin J, Li N, Ma W, Brabec CJ, Huang F, Cao Y. Nat Energy, 2018, 3: 1051-1058 CrossRef ADS Google Scholar

[18] Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip HL, Cao Y, Chen Y. Science, 2018, 361: 1094-1098 CrossRef PubMed ADS Google Scholar

[19] Li T, Wu Y, Zhou J, Li M, Wu J, Hu Q, Jia B, Pan X, Zhang M, Tang Z, Xie Z, Russell TP, Zhan X. J Am Chem Soc, 2020, 142: 20124-20133 CrossRef PubMed Google Scholar

[20] Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H. Nat Commun, 2014, 5: 5293 CrossRef PubMed ADS Google Scholar

[21] Liu T, Huo L, Chandrabose S, Chen K, Han G, Qi F, Meng X, Xie D, Ma W, Yi Y, Hodgkiss JM, Liu F, Wang J, Yang C, Sun Y. Adv Mater, 2018, 30: 1707353 CrossRef PubMed Google Scholar

[22] Lin F, Jiang K, Kaminsky W, Zhu Z, Jen AKY. J Am Chem Soc, 2020, 142: 15246-15251 CrossRef PubMed Google Scholar

[23] Qian D, Zheng Z, Yao H, Tress W, Hopper TR, Chen S, Li S, Liu J, Chen S, Zhang J, Liu XK, Gao B, Ouyang L, Jin Y, Pozina G, Buyanova IA, Chen WM, Inganäs O, Coropceanu V, Bredas JL, Yan H, Hou J, Zhang F, Bakulin AA, Gao F. Nat Mater, 2018, 17: 703-709 CrossRef PubMed ADS Google Scholar

[24] Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140-1151 CrossRef Google Scholar

[25] Lin Y, Firdaus Y, Isikgor FH, Nugraha MI, Yengel E, Harrison GT, Hallani R, El-Labban A, Faber H, Ma C, Zheng X, Subbiah A, Howells CT, Bakr OM, McCulloch I, Wolf SD, Tsetseris L, Anthopoulos TD. ACS Energy Lett, 2020, 5: 2935-2944 CrossRef Google Scholar

[26] Xia R, Brabec CJ, Yip HL, Cao Y. Joule, 2019, 3: 2241-2254 CrossRef Google Scholar

[27] Yuan J, Zhang C, Chen H, Zhu C, Cheung SH, Qiu B, Cai F, Wei Q, Liu W, Yin H, Zhang R, Zhang J, Liu Y, Zhang H, Liu W, Peng H, Yang J, Meng L, Gao F, So S, Li Y, Zou Y. Sci China Chem, 2020, 63: 1159-1168 CrossRef Google Scholar

[28] Wu Y, Zheng Y, Yang H, Sun C, Dong Y, Cui C, Yan H, Li Y. Sci China Chem, 2020, 63: 265-271 CrossRef Google Scholar

[29] Gao L, Zhang ZG, Bin H, Xue L, Yang Y, Wang C, Liu F, Russell TP, Li Y. Adv Mater, 2016, 28: 8288-8295 CrossRef PubMed Google Scholar

[30] Sun C, Qin S, Wang R, Chen S, Pan F, Qiu B, Shang Z, Meng L, Zhang C, Xiao M, Yang C, Li Y. J Am Chem Soc, 2020, 142: 1465-1474 CrossRef PubMed Google Scholar

[31] Li X, Ma R, Liu T, Xiao Y, Chai G, Lu X, Yan H, Li Y. Sci China Chem, 2020, 63: 1256-1261 CrossRef Google Scholar

[32] Ma R, Liu T, Luo Z, Guo Q, Xiao Y, Chen Y, Li X, Luo S, Lu X, Zhang M, Li Y, Yan H. Sci China Chem, 2020, 63: 325-330 CrossRef Google Scholar

[33] Hou J, Park MH, Zhang S, Yao Y, Chen LM, Li JH, Yang Y. Macromolecules, 2008, 41: 6012-6018 CrossRef ADS Google Scholar

[34] Yao H, Ye L, Zhang H, Li S, Zhang S, Hou J. Chem Rev, 2016, 116: 7397-7457 CrossRef PubMed Google Scholar

[35] Zhang ZG, Li Y. Sci China Chem, 2015, 58: 192-209 CrossRef Google Scholar

[36] Huo L, Zhang S, Guo X, Xu F, Li Y, Hou J. Angew Chem Int Ed, 2011, 50: 9697-9702 CrossRef PubMed Google Scholar

[37] Bin H, Gao L, Zhang ZG, Yang Y, Zhang Y, Zhang C, Chen S, Xue L, Yang C, Xiao M, Li Y. Nat Commun, 2016, 7: 13651 CrossRef PubMed ADS Google Scholar

[38] Zhang M, Guo X, Zhang S, Hou J. Adv Mater, 2014, 26: 1118-1123 CrossRef PubMed Google Scholar

[39] Liang Y, Wu Y, Feng D, Tsai ST, Son HJ, Li G, Yu L. J Am Chem Soc, 2009, 131: 56-57 CrossRef PubMed Google Scholar

[40] Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H. Nat Energy, 2016, 1: 15027 CrossRef ADS Google Scholar

[41] Zhang M, Guo X, Ma W, Ade H, Hou J. Adv Mater, 2015, 27: 4655-4660 CrossRef PubMed Google Scholar

[42] Zhang S, Ma L, Ye L, Qin Y, Xu Y, Liu X, Wu Y, Zhao W, Ade H, Yao H, Hou J. Macromolecules, 2019, 52: 7929-7938 CrossRef ADS Google Scholar

[43] Sun H, Liu T, Yu J, Lau TK, Zhang G, Zhang Y, Su M, Tang Y, Ma R, Liu B, Liang J, Feng K, Lu X, Guo X, Gao F, Yan H. Energy Environ Sci, 2019, 12: 3328-3337 CrossRef Google Scholar

[44] Wu J, Li G, Fang J, Guo X, Zhu L, Guo B, Wang Y, Zhang G, Arunagiri L, Liu F, Yan H, Zhang M, Li Y. Nat Commun, 2020, 11: 4612 CrossRef PubMed ADS Google Scholar

  • Figure 1

    Materials design and characterization. (a) Synthetic route and molecular structures of polymer donors PM6, PM6-D1, PM6-D2, and PM6-D3; (b) molecular orbital theory explanation of alternate D-A copolymers; (c) electronic energy level diagram of the copolymers; (d) normalized absorption spectra of the copolymers films (color online).

  • Figure 2

    Photovoltaic performance of the PSCs based on copolymer donor:Y6. (a) J-V curves of the traditional structured PSCs based on copolymer donor:Y6 (1:1.4, w/w), under the illumination of AM 1.5G, 100 mW cm−2; (b) EQE spectra of the corresponding PSCs; (c) Jph versus Veff curves of the optimized devices; (d) light intensity dependence of Jsc values of the PSCs (color online).

  • Figure 3

    2D GIWAXS patterns of copolymers and line cuts of GIWAXS. GIWAXS images of the neat copolymer films (a) and the copolymer:Y6 films (b); line cuts in in plane direction (c) and out of plane direction (d) of the copolymer films; line cuts in in plane direction (e) and out of plane direction (f) of the copolymer:Y6 blend films (color online).

  • Figure 4

    Femtosecond transient absorption spectroscopy measurements of blend films. Femtosecond transient absorption spectra of binary blend of PM6-D1:Y6 (a) and PM6:Y6 (b) with excitation at 850 nm. Kinetic traces of PM6-D1:Y6 (c) and PM6:Y6 (d) at selected time delays with fitting (color online).

  • Table 1   Photovoltaic performance parameters of the PSCs based on copolymer:Y6 under the illumination of AM 1.5G, 100 mW cm−2

    Device

    Voc (V)

    Jsc(mA cm−2)

    FF (%)

    PCE (%)

    PM6:Y6

    0.84

    (0.84±0.002) a)

    25.32

    (25.16±0.34)

    74.4

    (73.5±1.02)

    15.82

    (15.47±0.29)

    PM6-D1:Y6

    0.85

    (0.85±0.003)

    26.47

    (26.21±0.32)

    78.7

    (77.8±1.04)

    17.71

    (17.43±0.18)

    PM6-D2:Y6

    0.85

    (0.85±0.002)

    26.18

    (25.93±0.41)

    75.6

    (74.9±0.95)

    16.82

    (17.54±0.21)

    PM6-D3:Y6

    0.86

    (0.86±0.002)

    26.01

    (25.79±0.36)

    76.1

    (75.3±0.96)

    17.02

    (16.82±0.14)

    The values in brackets are the average values and standard deviations of the device parameters based on 10 devices.

qqqq

Contact and support