logo

Interfacial compatibility issues in rechargeable solid-state lithium metal batteries: a review

More info
  • ReceivedJan 9, 2021
  • AcceptedMar 17, 2021
  • PublishedMar 23, 2021

Abstract


Funded by

This work is financially supported by the National Key Research and Development Program of China(2018YFB0905400)

the National Natural Science Foundation of China(21935009)


Acknowledgment

This work is financially supported by the National Key Research and Development Program of China (grant no. 2018YFB0905400), the National Natural Science Foundation of China (21935009).


Interest statement

The authors declare no conflict of interest.


References

[1] Tarascon JM, Armand M. Nature, 2001, 414: 359-367 CrossRef PubMed ADS Google Scholar

[2] Goodenough JB, Park KS. J Am Chem Soc, 2013, 135: 1167-1176 CrossRef PubMed Google Scholar

[3] Janek J, Zeier WG. Nat Energy, 2016, 1: 16141 CrossRef ADS Google Scholar

[4] Manthiram A, Yu X, Wang S. Nat Rev Mater, 2017, 2: 16103 CrossRef ADS Google Scholar

[5] Zhang Z, Shao Y, Lotsch B, Hu YS, Li H, Janek J, Nazar LF, Nan CW, Maier J, Armand M, Chen L. Energy Environ Sci, 2018, 11: 1945-1976 CrossRef Google Scholar

[6] Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R. Nat Energy, 2016, 1: 16030 CrossRef ADS Google Scholar

[7] Yang X, Adair KR, Gao X, Sun X. Energy Environ Sci, 2021, 14: 643-671 CrossRef Google Scholar

[8] Luntz AC, Voss J, Reuter K. J Phys Chem Lett, 2015, 6: 4599-4604 CrossRef PubMed Google Scholar

[9] Takada K, Ohta N, Tateyama Y. J Inorg Organomet Polym, 2015, 25: 205-213 CrossRef Google Scholar

[10] Cao D, Sun X, Li Q, Natan A, Xiang P, Zhu H. Matter, 2020, 3: 57-94 CrossRef Google Scholar

[11] Cheng D, Wynn TA, Wang X, Wang S, Zhang M, Shimizu R, Bai S, Nguyen H, Fang C, Kim M, Li W, Lu B, Kim SJ, Meng YS. Joule, 2020, 4: 2484-2500 CrossRef Google Scholar

[12] Usiskin R, Maier J. Adv Energy Mater, 2021, 11: 2001455 CrossRef Google Scholar

[13] Wang D, Zhu C, Fu Y, Sun X, Yang Y. Adv Energy Mater, 2020, 10: 2001318 CrossRef Google Scholar

[14] Chen R, Li Q, Yu X, Chen L, Li H. Chem Rev, 2020, 120: 6820-6877 CrossRef PubMed Google Scholar

[15] Yang X, Luo J, Sun X. Chem Soc Rev, 2020, 49: 2140-2195 CrossRef PubMed Google Scholar

[16] Banerjee A, Wang X, Fang C, Wu EA, Meng YS. Chem Rev, 2020, 120: 6878-6933 CrossRef PubMed Google Scholar

[17] Schwietert TK, Arszelewska VA, Wang C, Yu C, Vasileiadis A, de Klerk NJJ, Hageman J, Hupfer T, Kerkamm I, Xu Y, van der Maas E, Kelder EM, Ganapathy S, Wagemaker M. Nat Mater, 2020, 19: 428-435 CrossRef PubMed ADS Google Scholar

[18] Zhao Q, Stalin S, Zhao CZ, Archer LA. Nat Rev Mater, 2020, 5: 229-252 CrossRef ADS Google Scholar

[19] Zheng B, Liu X, Zhu J, Zhao J, Zhong G, Xiang Y, Wang H, Zhao W, Umeshbabu E, Wu QH, Huang J, Yang Y. Nano Energy, 2020, 67: 104252 CrossRef Google Scholar

[20] Zhu J, Zhao J, Xiang Y, Lin M, Wang H, Zheng B, He H, Wu Q, Huang JY, Yang Y. Chem Mater, 2020, 32: 4998-5008 CrossRef Google Scholar

[21] Tateyama Y, Gao B, Jalem R, Haruyama J. Curr Opin Electrochem, 2019, 17: 149-157 CrossRef Google Scholar

[22] Swift MW, Qi Y. Phys Rev Lett, 2019, 122: 167701 CrossRef PubMed ADS arXiv Google Scholar

[23] Cheng Z, Liu M, Ganapathy S, Li C, Li Z, Zhang X, He P, Zhou H, Wagemaker M. Joule, 2020, 4: 1311-1323 CrossRef Google Scholar

[24] Koerver R, Zhang W, de Biasi L, Schweidler S, Kondrakov AO, Kolling S, Brezesinski T, Hartmann P, Zeier WG, Janek J. Energy Environ Sci, 2018, 11: 2142-2158 CrossRef Google Scholar

[25] Pervez SA, Cambaz MA, Thangadurai V, Fichtner M. ACS Appl Mater Interfaces, 2019, 11: 22029-22050 CrossRef PubMed Google Scholar

[26] Sun N, Liu Q, Cao Y, Lou S, Ge M, Xiao X, Lee WK, Gao Y, Yin G, Wang J, Sun X. Angew Chem Int Ed, 2019, 58: 18647-18653 CrossRef PubMed Google Scholar

[27] Wang MJ, Choudhury R, Sakamoto J. Joule, 2019, 3: 2165-2178 CrossRef Google Scholar

[28] Tian HK, Chakraborty A, Talin AA, Eisenlohr P, Qi Y. J Electrochem Soc, 2020, 167: 090541 CrossRef ADS Google Scholar

[29] Han F, Zhu Y, He X, Mo Y, Wang C. Adv Energy Mater, 2016, 6: 1501590 CrossRef Google Scholar

[30] Urban A, Seo DH, Ceder G. npj Comput Mater, 2016, 2: 16002 CrossRef ADS Google Scholar

[31] Han F, Yue J, Chen C, Zhao N, Fan X, Ma Z, Gao T, Wang F, Guo X, Wang C. Joule, 2018, 2: 497-508 CrossRef Google Scholar

[32] Maier J. Berichte der Bunsengesellschaft für physikalische Chem, 1985, 89: 355-362 CrossRef Google Scholar

[33] Schmalzried H, Janek J. Berichte der Bunsengesellschaft für physikalische Chem, 1998, 102: 127-143 CrossRef Google Scholar

[34] Santhanagopalan D, Qian D, McGilvray T, Wang Z, Wang F, Camino F, Graetz J, Dudney N, Meng YS. J Phys Chem Lett, 2014, 5: 298-303 CrossRef PubMed Google Scholar

[35] Haruyama J, Sodeyama K, Han L, Takada K, Tateyama Y. Chem Mater, 2014, 26: 4248-4255 CrossRef Google Scholar

[36] Braun S, Yada C, Latz A. J Phys Chem C, 2015, 119: 22281-22288 CrossRef Google Scholar

[37] Lewis JA, Tippens J, Cortes FJQ, McDowell MT. Trends Chem, 2019, 1: 845-857 CrossRef Google Scholar

[38] Zhao Y, Stein P, Bai Y, Al-Siraj M, Yang Y, Xu BX. J Power Sources, 2019, 413: 259-283 CrossRef ADS Google Scholar

[39] Yang Y. Solid State Electrochemistry. Beijing: Chemical Industry Press, 2016. 1–6. Google Scholar

[40] Brad A, Faulkner L. Electrochemical Methods: Fundamentals and Applications. New York: John Wiley & Sons, Inc., 2000. Google Scholar

[41] Weiss M, Simon FJ, Busche MR, Nakamura T, Schröder D, Richter FH, Janek J. Electrochem Energ Rev, 2020, 3: 221-238 CrossRef Google Scholar

[42] Han F, Westover AS, Yue J, Fan X, Wang F, Chi M, Leonard DN, Dudney NJ, Wang H, Wang C. Nat Energy, 2019, 4: 187-196 CrossRef ADS Google Scholar

[43] Li F, Li J, Zhu F, Liu T, Xu B, Kim TH, Kramer MJ, Ma C, Zhou L, Nan CW. Matter, 2019, 1: 1001-1016 CrossRef Google Scholar

[44] Dudney NJ, West WC, Nanda J. Handbook of Solid State Batteries. World Scientific, 2015. Google Scholar

[45] Iriyama Y, Kako T, Yada C, Abe T, Ogumi Z. Solid State Ion, 2005, 176: 2371-2376 CrossRef Google Scholar

[46] Kobayashi Y. Solid State Ion, 2002, 152-153: 137-142 CrossRef Google Scholar

[47] Ohta S, Kobayashi T, Seki J, Asaoka T. J Power Sources, 2012, 202: 332-335 CrossRef Google Scholar

[48] Buschmann H, Berendts S, Mogwitz B, Janek J. J Power Sources, 2012, 206: 236-244 CrossRef Google Scholar

[49] Krauskopf T, Hartmann H, Zeier WG, Janek J. ACS Appl Mater Interfaces, 2019, 11: 14463-14477 CrossRef PubMed Google Scholar

[50] Yu C, Ganapathy S, Eck ERH, Wang H, Basak S, Li Z, Wagemaker M. Nat Commun, 2017, 8: 1086 CrossRef PubMed ADS Google Scholar

[51] Eyring H, Lin SH. Basic Chemical Kinetics. John Wiley & Sons, Inc., 1980. Google Scholar

[52] Richards WD, Miara LJ, Wang Y, Kim JC, Ceder G. Chem Mater, 2015, 28: 266-273 CrossRef Google Scholar

[53] Otoyama M, Ito Y, Hayashi A, Tatsumisago M. J Power Sources, 2016, 302: 419-425 CrossRef ADS Google Scholar

[54] Auvergniot J, Cassel A, Ledeuil JB, Viallet V, Seznec V, Dedryvère R. Chem Mater, 2017, 29: 3883-3890 CrossRef Google Scholar

[55] Krauskopf T, Richter FH, Zeier WG, Janek J. Chem Rev, 2020, 120: 7745-7794 CrossRef PubMed Google Scholar

[56] Fu KK, Gong Y, Fu Z, Xie H, Yao Y, Liu B, Carter M, Wachsman E, Hu L. Angew Chem Int Ed, 2017, 56: 14942-14947 CrossRef PubMed Google Scholar

[57] Shao Y, Wang H, Gong Z, Wang D, Zheng B, Zhu J, Lu Y, Hu YS, Guo X, Li H, Huang X, Yang Y, Nan CW, Chen L. ACS Energy Lett, 2018, 3: 1212-1218 CrossRef Google Scholar

[58] Wang C, Gong Y, Liu B, Fu K, Yao Y, Hitz E, Li Y, Dai J, Xu S, Luo W, Wachsman ED, Hu L. Nano Lett, 2017, 17: 565-571 CrossRef PubMed ADS Google Scholar

[59] Shi K, Wan Z, Yang L, Zhang Y, Huang Y, Su S, Xia H, Jiang K, Shen L, Hu Y, Zhang S, Yu J, Ren F, He YB, Kang F. Angew Chem Int Ed, 2020, 59: 11784-11788 CrossRef PubMed Google Scholar

[60] Wu W, Duan J, Wen J, Chen Y, Liu X, Huang L, Wang Z, Deng S, Huang Y, Luo W. Sci China Chem, 2020, 63: 1483-1489 CrossRef Google Scholar

[61] Xu P, Rheinheimer W, Shuvo SN, Qi Z, Levit O, Wang H, Ein‐Eli Y, Stanciu LA. ChemElectroChem, 2019, 6: 4576-4585 CrossRef Google Scholar

[62] Zhu Y, He X, Mo Y. J Mater Chem A, 2016, 4: 3253-3266 CrossRef Google Scholar

[63] Zhu Y, He X, Mo Y. ACS Appl Mater Interfaces, 2015, 7: 23685-23693 CrossRef PubMed Google Scholar

[64] Lotsch BV, Maier J. J Electroceram, 2017, 38: 128-141 CrossRef Google Scholar

[65] Butler KT, Sai Gautam G, Canepa P. npj Comput Mater, 2019, 5: 19 CrossRef ADS Google Scholar

[66] Han F, Gao T, Zhu Y, Gaskell KJ, Wang C. Adv Mater, 2015, 27: 3473-3483 CrossRef PubMed Google Scholar

[67] Ohta S, Kobayashi T, Asaoka T. J Power Sources, 2011, 196: 3342-3345 CrossRef ADS Google Scholar

[68] Li Y, Zhou W, Chen X, Lü X, Cui Z, Xin S, Xue L, Jia Q, Goodenough JB. Proc Natl Acad Sci USA, 2016, 113: 13313-13317 CrossRef PubMed Google Scholar

[69] Chung H, Kang B. Chem Mater, 2017, 29: 8611-8619 CrossRef Google Scholar

[70] Wenzel S, Randau S, Leichtweiß T, Weber DA, Sann J, Zeier WG, Janek J. Chem Mater, 2016, 28: 2400-2407 CrossRef Google Scholar

[71] Wenzel S, Leichtweiss T, Krüger D, Sann J, Janek J. Solid State Ion, 2015, 278: 98-105 CrossRef Google Scholar

[72] Sakuda A, Hayashi A, Tatsumisago M. Chem Mater, 2010, 22: 949-956 CrossRef Google Scholar

[73] Haruyama J, Sodeyama K, Tateyama Y. ACS Appl Mater Interfaces, 2017, 9: 286-292 CrossRef PubMed Google Scholar

[74] Woo JH, Trevey JE, Cavanagh AS, Choi YS, Kim SC, George SM, Oh KH, Lee SH. J Electrochem Soc, 2012, 159: A1120-A1124 CrossRef Google Scholar

[75] Park K, Yu BC, Jung JW, Li Y, Zhou W, Gao H, Son S, Goodenough JB. Chem Mater, 2016, 28: 8051-8059 CrossRef Google Scholar

[76] Song YX, Shi Y, Wan J, Lang SY, Hu XC, Yan HJ, Liu B, Guo YG, Wen R, Wan LJ. Energy Environ Sci, 2019, 12: 2496-2506 CrossRef Google Scholar

[77] Kitaura H, Hayashi A, Tadanaga K, Tatsumisago M. J Power Sources, 2009, 189: 145-148 CrossRef ADS Google Scholar

[78] Liang J, Li X, Zhao Y, Goncharova LV, Li W, Adair KR, Banis MN, Hu Y, Sham T‐, Huang H, Zhang L, Zhao S, Lu S, Li R, Sun X. Adv Energy Mater, 2019, 9: 1902125 CrossRef Google Scholar

[79] Lee YG, Fujiki S, Jung C, Suzuki N, Yashiro N, Omoda R, Ko DS, Shiratsuchi T, Sugimoto T, Ryu S, Ku JH, Watanabe T, Park Y, Aihara Y, Im D, Han IT. Nat Energy, 2020, 5: 299-308 CrossRef ADS Google Scholar

[80] Nolan AM, Liu Y, Mo Y. ACS Energy Lett, 2019, 4: 2444-2451 CrossRef Google Scholar

[81] Zhao Y, Zheng K, Sun X. Joule, 2018, 2: 2583-2604 CrossRef Google Scholar

[82] Zhao Y, Sun X. ACS Energy Lett, 2018, 3: 899-914 CrossRef Google Scholar

[83] Ihrig M, Finsterbusch M, Tsai CL, Laptev AM, Tu C, Bram M, Sohn YJ, Ye R, Sevinc S, Lin S, Fattakhova-Rohlfing D, Guillon O. J Power Sources, 2021, 482: 228905 CrossRef ADS Google Scholar

[84] Bram M, Laptev AM, Mishra TP, Nur K, Kindelmann M, Ihrig M, Pereira da Silva JG, Steinert R, Buchkremer HP, Litnovsky A, Klein F, Gonzalez-Julian J, Guillon O. Adv Eng Mater, 2020, 22: 2000051 CrossRef Google Scholar

[85] Yao X, Huang N, Han F, Zhang Q, Wan H, Mwizerwa JP, Wang C, Xu X. Adv Energy Mater, 2017, 7: 1602923 CrossRef Google Scholar

[86] Duan H, Fan M, Chen WP, Li JY, Wang PF, Wang WP, Shi JL, Yin YX, Wan LJ, Guo YG. Adv Mater, 2019, 31: 1807789 CrossRef PubMed Google Scholar

[87] Liang J, Li X, Wang S, Adair KR, Li W, Zhao Y, Wang C, Hu Y, Zhang L, Zhao S, Lu S, Huang H, Li R, Mo Y, Sun X. J Am Chem Soc, 2020, 142: 7012-7022 CrossRef PubMed Google Scholar

[88] Li X, Liang J, Yang X, Adair KR, Wang C, Zhao F, Sun X. Energy Environ Sci, 2020, 13: 1429-1461 CrossRef Google Scholar

[89] Zhang B, Weng M, Lin Z, Feng Y, Yang L, Wang LW, Pan F. Small, 2020, 16: 1906374 CrossRef PubMed Google Scholar

[90] de Klerk NJJ, Wagemaker M. ACS Appl Energy Mater, 2018, 1: 5069-5618 CrossRef PubMed Google Scholar

[91] Maier J. Prog Solid State Chem, 1995, 23: 171-263 CrossRef Google Scholar

[92] Yamamoto K, Iriyama Y, Asaka T, Hirayama T, Fujita H, Fisher CAJ, Nonaka K, Sugita Y, Ogumi Z. Angew Chem Int Ed, 2010, 49: 4414-4417 CrossRef PubMed Google Scholar

[93] Fingerle M, Buchheit R, Sicolo S, Albe K, Hausbrand R. Chem Mater, 2017, 29: 7675-7685 CrossRef Google Scholar

[94] Yamamoto K, Iriyama Y, Asaka T, Hirayama T, Fujita H, Nonaka K, Miyahara K, Sugita Y, Ogumi Z. Electrochem Commun, 2012, 20: 113-116 CrossRef Google Scholar

[95] Liang JY, Zeng XX, Zhang XD, Wang PF, Ma JY, Yin YX, Wu XW, Guo YG, Wan LJ. J Am Chem Soc, 2018, 140: 6767-6770 CrossRef PubMed Google Scholar

[96] Ohta N, Takada K, Zhang L, Ma R, Osada M, Sasaki T. Adv Mater, 2006, 18: 2226-2229 CrossRef Google Scholar

[97] Gittleson FS, El Gabaly F. Nano Lett, 2017, 17: 6974-6982 CrossRef PubMed ADS Google Scholar

[98] Gao B, Jalem R, Ma Y, Tateyama Y. Chem Mater, 2020, 32: 85-96 CrossRef Google Scholar

[99] Wang L, Xie R, Chen B, Yu X, Ma J, Li C, Hu Z, Sun X, Xu C, Dong S, Chan TS, Luo J, Cui G, Chen L. Nat Commun, 2020, 11: 5889 CrossRef PubMed ADS Google Scholar

[100] Tian HK, Qi Y. J Electrochem Soc, 2017, 164: E3512-E3521 CrossRef Google Scholar

[101] Zhao CZ, Duan H, Huang JQ, Zhang J, Zhang Q, Guo YG, Wan LJ. Sci China Chem, 2019, 62: 1286-1299 CrossRef Google Scholar

[102] Xie H, Hao Q, Jin H, Xie S, Sun Z, Ye Y, Zhang C, Wang D, Ji H, Wan LJ. Sci China Chem, 2020, 63: 1306-1314 CrossRef Google Scholar

[103] Kasemchainan J, Zekoll S, Spencer Jolly D, Ning Z, Hartley GO, Marrow J, Bruce PG. Nat Mater, 2019, 18: 1105-1111 CrossRef PubMed ADS Google Scholar

[104] Huo H, Chen Y, Zhao N, Lin X, Luo J, Yang X, Liu Y, Guo X, Sun X. Nano Energy, 2019, 61: 119-125 CrossRef Google Scholar

[105] Li Y, Chen X, Dolocan A, Cui Z, Xin S, Xue L, Xu H, Park K, Goodenough JB. J Am Chem Soc, 2018, 140: 6448-6455 CrossRef PubMed Google Scholar

[106] Doux J‐, Nguyen H, Tan DHS, Banerjee A, Wang X, Wu EA, Jo C, Yang H, Meng YS. Adv Energy Mater, 2020, 10: 1903253 CrossRef Google Scholar

[107] Krauskopf T, Mogwitz B, Rosenbach C, Zeier WG, Janek J. Adv Energy Mater, 2019, 9: 1902568 CrossRef Google Scholar

[108] Liu L, Qi X, Ma Q, Rong X, Hu YS, Zhou Z, Li H, Huang X, Chen L. ACS Appl Mater Interfaces, 2016, 8: 32631-32636 CrossRef PubMed Google Scholar

[109] Groh MF, Sullivan MJ, Gaultois MW, Pecher O, Griffith KJ, Grey CP. Chem Mater, 2018, 30: 5886-5895 CrossRef Google Scholar

[110] Ohta S, Komagata S, Seki J, Saeki T, Morishita S, Asaoka T. J Power Sources, 2013, 238: 53-56 CrossRef Google Scholar

[111] Liu T, Ren Y, Shen Y, Zhao SX, Lin Y, Nan CW. J Power Sources, 2016, 324: 349-357 CrossRef ADS Google Scholar

[112] Dong D, Zhou B, Sun Y, Zhang H, Zhong G, Dong Q, Fu F, Qian H, Lin Z, Lu D, Shen Y, Wu J, Chen L, Chen H. Nano Lett, 2019, 19: 2343-2349 CrossRef PubMed ADS Google Scholar

[113] Liang JY, Zeng XX, Zhang XD, Zuo TT, Yan M, Yin YX, Shi JL, Wu XW, Guo YG, Wan LJ. J Am Chem Soc, 2019, 141: 9165-9169 CrossRef PubMed Google Scholar

[114] van den Broek J, Afyon S, Rupp JLM. Adv Energy Mater, 2016, 6: 1600736 CrossRef Google Scholar

[115] Hitz GT, McOwen DW, Zhang L, Ma Z, Fu Z, Wen Y, Gong Y, Dai J, Hamann TR, Hu L, Wachsman ED. Mater Today, 2019, 22: 50-57 CrossRef Google Scholar

[116] Jin Y, Liu K, Lang J, Zhuo D, Huang Z, Wang C, Wu H, Cui Y. Nat Energy, 2018, 3: 732-738 CrossRef ADS Google Scholar

[117] Jin Y, Liu K, Lang J, Jiang X, Zheng Z, Su Q, Huang Z, Long Y, Wang C, Wu H, Cui Y. Joule, 2020, 4: 262-274 CrossRef Google Scholar

[118] Lu Y, Chen J. Nat Rev Chem, 2020, 4: 127-142 CrossRef Google Scholar

[119] Strauss F, Bartsch T, de Biasi L, Kim AY, Janek J, Hartmann P, Brezesinski T. ACS Energy Lett, 2018, 3: 992-996 CrossRef Google Scholar

[120] Koerver R, Aygün I, Leichtweiß T, Dietrich C, Zhang W, Binder JO, Hartmann P, Zeier WG, Janek J. Chem Mater, 2017, 29: 5574-5582 CrossRef Google Scholar

[121] Xu Z, Rahman MM, Mu L, Liu Y, Lin F. J Mater Chem A, 2018, 6: 21859-21884 CrossRef Google Scholar

[122] Ruess R, Schweidler S, Hemmelmann H, Conforto G, Bielefeld A, Weber DA, Sann J, Elm MT, Janek J. J Electrochem Soc, 2020, 167: 100532 CrossRef ADS Google Scholar

[123] Bucci G, Talamini B, Renuka Balakrishna A, Chiang YM, Carter WC. Phys Rev Mater, 2018, 2: 105407 CrossRef ADS Google Scholar

[124] Zhang W, Schröder D, Arlt T, Manke I, Koerver R, Pinedo R, Weber DA, Sann J, Zeier WG, Janek J. J Mater Chem A, 2017, 5: 9929-9936 CrossRef Google Scholar

[125] de Biasi L, Lieser G, Dräger C, Indris S, Rana J, Schumacher G, Mönig R, Ehrenberg H, Binder JR, Geßwein H. J Power Sources, 2017, 362: 192-201 CrossRef ADS Google Scholar

[126] Ariyoshi K, Yamamoto H, Yamada Y. Electrochim Acta, 2018, 260: 498-503 CrossRef Google Scholar

[127] Ariyoshi K, Orikasa Y, Kajikawa K, Yamada Y. J Mater Chem A, 2019, 7: 13641-13649 CrossRef Google Scholar

[128] Strauss F, de Biasi L, Kim AY, Hertle J, Schweidler S, Janek J, Hartmann P, Brezesinski T. ACS Mater Lett, 2020, 2: 84-88 CrossRef Google Scholar

[129] Besli MM, Xia S, Kuppan S, Huang Y, Metzger M, Shukla AK, Schneider G, Hellstrom S, Christensen J, Doeff MM, Liu Y. Chem Mater, 2019, 31: 491-501 CrossRef Google Scholar

[130] Lewis JA, Cortes FJQ, Liu Y, Miers JC, Verma A, Vishnugopi BS, Tippens J, Prakash D, Marchese TS, Han SY, Lee C, Shetty PP, Lee HW, Shevchenko P, De Carlo F, Saldana C, Mukherjee PP, McDowell MT. Nat Mater, 2021, : doi: 10.1038/s41563-020-00903-2 CrossRef PubMed Google Scholar

[131] Zhang C, Feng Y, Han Z, Gao S, Wang M, Wang P. Adv Mater, 2019, 32: 1903747 CrossRef PubMed Google Scholar

[132] Zhang C, Firestein KL, Fernando JFS, Siriwardena D, von Treifeldt JE, Golberg D. Adv Mater, 2020, 32: 1904094 CrossRef PubMed Google Scholar

[133] Cao C, Toney MF, Sham TK, Harder R, Shearing PR, Xiao X, Wang J. Mater Today, 2020, 34: 132-147 CrossRef Google Scholar

[134] Xiang Y, Li X, Cheng Y, Sun X, Yang Y. Mater Today, 2020, 36: 139-157 CrossRef Google Scholar

  • Figure 1

    Main fundamental challenges at electrode|solid electrolyte interfaces (color online).

  • Figure 2

    Schematic charge transfer processes at electrode|electrolyte interfaces: (a) Thermodynamically stable interface, where no interphase is formed; (b) Homogeneous single-phase SEI is formed; (c) Multiphase SEI is formed. In case a, only one CT process exists. In case b, two different CT processes exist, which are totally different from ideal CT process in case a. In case c, more CT processes appear depending on the number of components in SEI [55] (color online).

  • Figure 3

    (a) Electrochemical stability of an SE in contact with lithium metal anodes according to the simplified “band gap approach” [55]. (b) Thermodynamic potential windows for a Li10GeP2S12 (LGPS) SE evaluated by the “phase stability method” [29]. (c) Schematic illustration of the extended electrochemical stability by interphase and coating [63] (color online).

  • Figure 4

    (a) Voltage profiles around LiCoO2|LATP interface (left) and LATP|Pt interface (right) measured by electron holography at different charging voltages. NE is the in-situ formed negative electrode material, scale length: μm [92,94]. (b) Lithium concentration at the LCO|LLZO interface at 4.3 V with and without Coulomb interactions [90]. (c) Schematic of the electrostatic potential and valence bands at the LiPON and LixCoO2 interfaces [22]. (d) Schematic representation of the impact of the space-charge layer at the interface of LiV2O5|LAGP and Li2V2O5|LAGP and corresponding 6Li NMR exchange experiments [23]. (e) Schematic diagram with bearing analysis and potential distribution of the P–NCM and L–NCM (with LATP modified) cathodes [95] (color online).

  • Figure 5

    (a–f) Stack pressure on the shorting behavior of lithium-metal SSBs: (a) poor contact of electrolytes and lithium before pressing; (b) 25 MPa is applied to press the lithium metal on electrolytes; (c) the cell resistance decreased a lot even after the pressure is recovered to 5 MPa; (d) 5 MPa, (e) 25 MPa, (f) 75 MPa is applied on the symmetric cell during the cycle [106]. (g–h) Depletion of Li at the Li|electrolyte interface during cycling: (g) above the “critical stack pressure”, the applied pressure is sufficient to maintain the contact between lithium and electrolytes; (h) below the “critical stack pressure”, the applied pressure is insufficient to replenish lithium at the interface, leading to void formation at the interface and reduction of contact area; (i) potential response under a constant current density of 0.2 mA cm−2 and decreasing stack pressure [27] (color online).

  • Figure 6

    Lithium transport properties and morphological change of the interface between solid electrolytes and (a) lithium metal electrodes and (b) a lithium rich Li-Mg alloy electrodes [107] (color online).

  • Figure 7

    (a) Three-dimensional elemental mapping of the LiCoO2|LLZO interface obtained by time of flight secondary ion mass spectrometry (TOF-SIMS), color scales beside the maps show ionic concentrations of each ions: upper represents a higher concentration [75]. (b) Schematic of the LCBO interphase engineered all ceramic LCO|LLZO interfaces and the cycle performance of the interphase-engineered all-ceramic Li|LLZO|LCO battery at 0.05 C at 25 °C [31]. Illustration of the solid-state full battery with (c) pristine LATP electrolytes and (d) disparate-polymer-engineered LATP electrolytes [113] (color online).

  • Figure 8

    (a–d) Scanning electron microscopy (SEM) images of the cathode composite of NCM 811 and β-Li3PO4: (a, b) as prepared without applied current or potential; (c, d) SEM inages of the cell after 50 cycles in the discharged state [120]. Comparison of the stress response of LTO/SE|SE|CAM/SE using (e) LCO, (f) NCM-811 and (g) a blend of 55:45 wt.% NCM-811:LCO cathode composites. The cell with LCO shows positive volume expansion effects. The cell with NCM-811 exhibits a negative stress response. However, the cell containing the blending of LCO and NCM-811 shows an overall lower nominal stress [24] (color online).

  • Table 1   Survey of activation energy (Ea) for charge transfer reactions at electrode|solid electrolyte interfaces

    Solid electrolyte (SE)

    Ea of SE (kJ mol−1)

    Electrode (ED)

    Ea of charge transfer reaction (kJ mol−1)

    References

    LiPON

    58

    LiCoO2

    57

    [45]

    LLTO

    30

    LiMn2O4

    38

    [46]

    LLZO

    30

    LiCoO2

    30

    [47]

    LLZO

    30

    Li

    30

    [47]

    Li7La3Zr2O12 (28 mol% Al)

    34.72

    Li

    39.54

    [48]

    Li6.625La3Zr1.625Ta0.375O12 (29 mol% Al)

    39.58

    Li

    42.43

    [48]

    Li6La3ZrTaO12

    44.36

    Li

    44.36

    [48]

    LLZO

    32.79

    (Bulk)

    Li

    35.68

    [49]

    LLZO

    41.46

    (Grain boundary)

    Li

    35.68

    [49]

    Li6PS5Br

    10.13

    Micro Li2S

    /

    [50]

    Li6PS5Br

    10.13

    Nano-Li2S

    /

    [50]

    Li6PS5Br

    10.13

    Mixed nano-Li2S

    12.54

    [50]

    Li6PS5Br

    10.13

    Annealed mixed nano-Li2S

    9.64

    [50]

    Li6PS5Br

    10.13

    Mixed nano-Li2S (cycled)

    37.61

    [50]

    LAGP

    /

    LiV2O5

    30.37

    [23]

    LAGP

    /

    Li2V2O5

    49.67

    [23]

  • Table 2   Summary of the recent representative researches on interfacial space charge layers

    Electrode|solid electrolyte (Coating)

    Methods

    Main conclusions

    Reference

    LCO|LATSP|Pt

    Quantitative electron holography (EH)+electron energy loss spectroscopy (EELS)

    An electric double layer forms at the interface as a result of lithium-ion accumulation/depletion

    [92,94]

    LCO|LiPON (LNO)

    XPS+electrochemical techniques

    Chemical coordination near the interface providingexperimental validation of space-charge separation. LNO can reduce separation and promote cell stability.

    [97]

    LCO|LiPON

    XPS

    The experiment-supported energy level diagram indicates the presence of a space charge layer

    [93]

    /

    Mathematical model+constitutiveassumption

    The predicted SCL is one order of magnitude larger than that in LE, and is mainly determined by dielectric properties of SE

    [36]

    LixV2O5|LAGP

    2D-EXSY NMR

    The SCL leads to a significant increase in the activation energy for Li-ion diffusion over the interface

    [23]

    LCO|LLZO/LATP|graphite

    Theoretical model(Coulombic interactions)

    The SCL with a thickness in nanometer regime, causing a small resistance, thus having a negligible effect

    [90]

    LCO(104)|LPS(010)

    CALYPSO+DFT

    Interfacial Li+ sites with higher μLi(r) values cause dynamic Li+ depletion, which can allow oxidative decomposition of SE materials.

    [98]

    NCM|ipn-PEA (LATP)

    AFM interfacial potential measurements

    The coating layer provides a gradual potential slope, mitigates polarization and weakens SCL

    [95]

    LCO|β-Li3PS4 (LNO)

    DFT+U calculations

    The LNO buffer layer suppresses the growth of SCL by eliminating interfacial Li adsorption sites

    [35]

    LiCoO2|Li6PS5Cl (BaTiO3)

    Differential phase contrast scanning transmission electron microscopy (DPC-STEM)

    Interface lithium-ion accumulation resulting from theSCL, BaTiO3 coating could reduce this effect.

    [99]

  • Table 3   Summary of the characterization techniques on interface researches

    Techniques

    Main information

    Photon

    Optical microscope

    Morphology

    Raman

    Surface structure, constituent

    Electron

    SEM/(S)TEM/EDS/EELS

    Morphology, element distribution, valence state

    Electron hologram (EH)

    Potential distribution

    X-ray

    XRD

    Chemical constituents, structures

    XPS

    Surface chemical information

    XAS

    Chemical information

    X-ray tomography

    Microstructures

    Neutron

    Neutron depth profile (NDP)

    Element distribution

    Radio frequency

    SS-NMR

    Chemical information, diffusion dynamics

    Mass spectrum

    TOF-SIMS

    Constituent/Element distribution

    Calculation

    DFT (+simulation)

    Structure, constituent, chemical information

qqqq

Contact and support