logo

SCIENCE CHINA Chemistry, Volume 64 , Issue 8 : 1310-1315(2021) https://doi.org/10.1007/s11426-021-9979-1

Donor-conformation-dependent energy transfer for dual-color fluorescent probe with high-resolution imaging

More info
  • ReceivedFeb 26, 2021
  • AcceptedMar 15, 2021
  • PublishedApr 15, 2021

Abstract


Funded by

the National Natural Science Foundation of China(21788102,21905090,21790361,22004036,91859205)

Shanghai Municipal Science and Technology Major Project(2018SHZDZX03)

the Program for Professor of Special Appointment(Eastern,Scholar)

Programme of Introducing Talents of Discipline to Universities(B16017)

Shanghai Science and Technology Committee(17520750100)

Natural Science Foundation of Shanghai(19ZR1412200)

and the Fundamental Research Funds for the Central Universities.


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21788102, 21905090, 21790361, 22004036, 91859205), Shanghai Municipal Science and Technology Major Project (2018SHZDZX03), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, Programme of Introducing Talents of Discipline to Universities (B16017), Shanghai Science and Technology Committee (17520750100), Natural Science Foundation of Shanghai (19ZR1412200), and the Fundamental Research Funds for the Central Universities.


Interest statement

The authors declare no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Gu K, Zhu WH, Peng X. Sci China Chem, 2019, 62: 189-198 CrossRef Google Scholar

[2] Xu W, Zeng Z, Jiang JH, Chang YT, Yuan L. Angew Chem Int Ed, 2016, 55: 13658-13699 CrossRef PubMed Google Scholar

[3] Huang Y, Zhang Y, Huo F, Wen Y, Yin C. Sci China Chem, 2020, 63: 1742-1755 CrossRef Google Scholar

[4] Li WT, Qu WJ, Zhu X, Li Q, Zhang HL, Yao H, Lin Q, Zhang YM, Wei TB. Sci China Chem, 2017, 60: 754-760 CrossRef Google Scholar

[5] Zhang J, Cheng P, Pu K. Bioconjugate Chem, 2019, 30: 2089-2101 CrossRef PubMed Google Scholar

[6] Lee MH, Kim JS, Sessler JL. Chem Soc Rev, 2015, 44: 4185-4191 CrossRef PubMed Google Scholar

[7] Gui R, Jin H, Bu X, Fu Y, Wang Z, Liu Q. Coord Chem Rev, 2019, 383: 82-103 CrossRef Google Scholar

[8] Park SH, Kwon N, Lee JH, Yoon J, Shin I. Chem Soc Rev, 2020, 49: 143-179 CrossRef PubMed Google Scholar

[9] Jiang X, Zhong J, Liu Y, Yu H, Zhuo S, Chen J. Scanning, 2011, 33: 53-56 CrossRef PubMed Google Scholar

[10] Guo L, Tian M, Zhang Z, Lu Q, Liu Z, Niu G, Yu X. J Am Chem Soc, 2021, 143: 3169-3179 CrossRef PubMed Google Scholar

[11] Wu L, Huang C, Emery BP, Sedgwick AC, Bull SD, He XP, Tian H, Yoon J, Sessler JL, James TD. Chem Soc Rev, 2020, 49: 5110-5139 CrossRef PubMed Google Scholar

[12] Yuan L, Lin W, Zheng K, Zhu S. Acc Chem Res, 2013, 46: 1462-1473 CrossRef PubMed Google Scholar

[13] Sapsford KE, Berti L, Medintz IL. Angew Chem Int Ed, 2006, 45: 4562-4589 CrossRef PubMed Google Scholar

[14] Zhang D, Hu M, Yuan X, Wu Y, Hu X, Xu S, Liu HW, Zhang XB, Liu Y, Tan W. ACS Appl Mater Interfaces, 2019, 11: 17722-17729 CrossRef PubMed Google Scholar

[15] Zhang X, Xiao Y, Qian X. Angew Chem Int Ed, 2008, 47: 8025-8029 CrossRef PubMed Google Scholar

[16] Zhao M, Wang J, Lei Z, Lu L, Wang S, Zhang H, Li B, Zhang F. Angew Chem Int Ed, 2021, 60: 5091-5095 CrossRef PubMed Google Scholar

[17] Fan J, Hu M, Zhan P, Peng X. Chem Soc Rev, 2013, 42: 29-43 CrossRef PubMed Google Scholar

[18] Chen Y, Zhang W, Cai Y, Kwok RTK, Hu Y, Lam JWY, Gu X, He Z, Zhao Z, Zheng X, Chen B, Gui C, Tang BZ. Chem Sci, 2016, 8: 2047-2055 CrossRef PubMed Google Scholar

[19] Albers AE, Okreglak VS, Chang CJ. J Am Chem Soc, 2006, 128: 9640-9641 CrossRef PubMed Google Scholar

[20] Su D, Teoh CL, Sahu S, Das RK, Chang YT. Biomaterials, 2014, 35: 6078-6085 CrossRef PubMed Google Scholar

[21] Yang Z, He Y, Lee JH, Park N, Suh M, Chae WS, Cao J, Peng X, Jung H, Kang C, Kim JS. J Am Chem Soc, 2013, 135: 9181-9185 CrossRef PubMed Google Scholar

[22] Huang W, Sun L, Zheng Z, Su J, Tian H. Chem Commun, 2015, 51: 4462-4464 CrossRef PubMed Google Scholar

[23] Zhang Z, Wu YS, Tang KC, Chen CL, Ho JW, Su J, Tian H, Chou PT. J Am Chem Soc, 2015, 137: 8509-8520 CrossRef PubMed Google Scholar

[24] Zhang Z, Chen CL, Chen YA, Wei YC, Su J, Tian H, Chou PT. Angew Chem Int Ed, 2018, 57: 9880-9884 CrossRef PubMed Google Scholar

[25] Humeniuk HV, Rosspeintner A, Licari G, Kilin V, Bonacina L, Vauthey E, Sakai N, Matile S. Angew Chem Int Ed, 2018, 57: 10559-10563 CrossRef PubMed Google Scholar

[26] Wu CH, Chen Y, Pyrshev KA, Chen YT, Zhang Z, Chang KH, Yesylevskyy SO, Demchenko AP, Chou PT. ACS Chem Biol, 2020, 15: 1862-1873 CrossRef PubMed Google Scholar

[27] Zhang Z, Song W, Su J, Tian H. Adv Funct Mater, 2020, 30: 1902803 CrossRef Google Scholar

[28] Hagihara K, Tsukagoshi K, Nakajima C, Esaki S, Hashimoto M. Anal Sci, 2016, 32: 367-370 CrossRef PubMed Google Scholar

[29] Nicoli F, Barth A, Bae W, Neukirchinger F, Crevenna AH, Lamb DC, Liedl T. ACS Nano, 2017, 11: 11264-11272 CrossRef PubMed Google Scholar

  • Figure 1

    The normalized absorption (black dotted line) and emission spectra (black solid line) of donor PPC6, and the normalized absorption spectra (red solid line) of acceptor Cy5. The shadow area represents the spectra overlap of PPC6 emission and Cy5 absorption. Testing solvent: acetonitrile; concentration: 10 μM; λex (PPC6)=400 nm (color online).

  • Scheme 1

    The schematic diagrams for illustrating the VIE donor-based FRET (abbreviated as VIE-FRET) process and the prepared VIE-FRET cassette (PPCy5) as well as the corresponding control VIE donor (PPC6) and acceptor (Cy5) in this context (b-FRET=bent form fluorescence resonance-energy transfer, p-FRET=planar form fluorescence resonance-energy transfer) (color online).

  • Figure 2

    (a) The absorption and (b) emission spectra of PPC6, Cy5, and PPCy5; (c) the emission spectra of PPC6, Cy5, and their mixture; (d) the comparison in emission spectra of PPCy5 and the mixture of PPC6 and Cy5. Test concentration: 10 μM; λex=400 nm (color online).

  • Figure 3

    Confocal fluorescent images of GUV stained with PPCy5 for 30 min. λex=405 nm; green channel: 450–550 nm; red channel: 650–750 nm. Scale bar=10 μm (color online).

  • Figure 4

    (a) The real-color fluorescent image and (b) in situ fluorescence spectra of A549 cells stained with PPCy5. For (b), the green plot was collected in the region indicated by the yellow circle in (a); the red plot was collected in the region indicated by the red circle in (a). λex=405 nm. (c, d) The real-color fluorescent images of Cy5 in A549 cells excited by a 405- and 633-nm laser, respectively. Scale bar=20 μm (color online).

  • Table 1   The photophysical properties of PPC6, Cy5, and VIE-FRET cassette PPCy5

    Dye

    Absorption

    Emission

    λabs a) (nm)

    (ε, ×104 M−1·cm−1)

    λabs b) (nm)

    (ε, ×104 M−1·cm−1)

    λem, 1c)

    (nm)

    λem, 2d)

    (nm)

    Stokes shift

    (nm)

    Bimodal spectra difference (nm)

    FIEF f)

    FEF g)

    FWHM h)

    PPC6

    375 (0.60)

    510

    635

    135/260

    125

    145

    Cy5

    640 (15.7)

    672

    32

    35

    PPCy5

    375 (1.12)

    640 (15.7)

    530

    672

    155/297 e)

    142

    18.4

    6.4

    35

    Maximum absorption peak of donor (ε is the corresponding molar extinction coefficient); b) maximum absorption peak of acceptor; c), d) maximum emission peaks; e) pseudo-Stokes shift of PPCy5, namely the spectra difference of maximum emission relative to maximum absorption in the short wavelength range; f) fluorescence intensity enhancement factors of PPCy5 relative to the acceptor Cy5 at 672 nm; g) fluorescence intensity enhancement factors of PPCy5 at 672 nm relative to the donor PPC6 at 635 nm; h) full width at half-maxima of longwave emission (testing solvent: acetonitrile, concentration: 10 μM, λex=400 nm).

qqqq

Contact and support