logo

SCIENCE CHINA Chemistry, Volume 64 , Issue 8 : 1297-1301(2021) https://doi.org/10.1007/s11426-021-9978-1

Photo-controllable room-temperature phosphorescence of organic photochromic polymers based on hexaarylbiimidazole

More info
  • ReceivedFeb 25, 2021
  • AcceptedMar 15, 2021
  • PublishedMay 21, 2021

Abstract


Funded by

the National Natural Science Foundation of China(21788102,22020102006,21871083,21722603)

Shanghai Municipal Science and Technology Major Project(2018SHZDZX03)

the Program of Shanghai Academic/Technology Research Leader(20XD1421300)

Shanghai Municipal Education Commission and Shanghai Education Development Foundation(19SG26)

the Innovation Program of Shanghai Municipal Education Commission(2017-01-07-00-02-E00010)

the Fundamental Research Funds for the Central Universities.


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21788102, 22020102006, 21871083, 21722603), Shanghai Municipal Science and Technology Major Project (2018SHZDZX03), the Program of Shanghai Academic/Technology Research Leader (20XD1421300), Shanghai Municipal Education Commission and Shanghai Education Development Foundation (19SG26), the Innovation Program of Shanghai Municipal Education Commission (2017-01-07-00-02-E00010) and the Fundamental Research Funds for the Central Universities.


Interest statement

The authors declare no conflict of interest.


Supplement

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Wei Y, Tang Q, Gong C, Lam MHW. Anal Chim Acta, 2015, 900: 10-20 CrossRef Google Scholar

[2] Yao X, Li T, Wang J, Ma X, Tian H. Adv Opt Mater, 2016, 4: 1322-1349 CrossRef Google Scholar

[3] Gu F, Zhang C, Ma X. Macromol Rapid Commun, 2019, 40: 1800751 CrossRef Google Scholar

[4] Gu F, Ding B, Ma X, Tian H. Ind Eng Chem Res, 2020, 59: 1578-1583 CrossRef Google Scholar

[5] Li JX, Xu JJ, Luo WQ, Jin CM. Dyes Pigments, 2021, 187: 109080 CrossRef Google Scholar

[6] Gong WL, Zhang GF, Li C, Aldred MP, Zhu MQ. RSC Adv, 2013, 3: 9167-9170 CrossRef ADS Google Scholar

[7] Li Z, Chen H, Li B, Xie Y, Gong X, Liu X, Li H, Zhao Y. Adv Sci, 2019, 6: 1901529 CrossRef Google Scholar

[8] Zhang H, Li W, Huang Q, Huang G, Chi Z, Li BS. Dyes Pigments, 2021, 187: 109128 CrossRef Google Scholar

[9] Zhao W, Liu Z, Yu J, Lu X, Lam JWY, Sun J, He Z, Ma H, Tang BZ. Adv Mater, 2021, 33: 2006844 CrossRef Google Scholar

[10] Alam P, Leung NLC, Liu J, Cheung TS, Zhang X, He Z, Kwok RTK, Lam JWY, Sung HHY, Williams ID, Chan CCS, Wong KS, Peng Q, Tang BZ. Adv Mater, 2020, 32: 2001026 CrossRef Google Scholar

[11] Dai X, Dong X, Liu Z, Liu G, Liu Y. Biomacromolecules, 2020, 21: 5369-5379 CrossRef Google Scholar

[12] Gao R, Cao D, Guan Y, Yan D. ACS Appl Mater Interfaces, 2015, 7: 9904-9910 CrossRef Google Scholar

[13] Zhou Z, Liu Q, Chen X, Xu G, Wang S, Tu Y, Zhang J, Zheng X, Xiang J, Feng X, Zhang Y, Xie S, Zeng Z, Tang BZ. Adv Funct Mater, 2021, 31: 2009024. Google Scholar

[14] Lin X, Wang J, Ding B, Ma X, Tian H. Angew Chem Int Ed, 2021, 60: 3459-3463 CrossRef Google Scholar

[15] Tian Y, Yang X, Gong Y, Wang Y, Fang M, Yang J, Tang Z, Li Z. Sci China Chem, 2021, 64: 445-451 CrossRef Google Scholar

[16] Bian L, Ma H, Ye W, Lv A, Wang H, Jia W, Gu L, Shi H, An Z, Huang W. Sci China Chem, 2020, 63: 1443-1448 CrossRef Google Scholar

[17] Wang JX, Zhang H, Niu LY, Zhu X, Kang YF, Boulatov R, Yang QZ. CCS Chem, 2020, 2: 1391-1398 CrossRef Google Scholar

[18] Zhou B, Zhao Q, Tang L, Yan D. Chem Commun, 2020, 56: 7698-7701 CrossRef Google Scholar

[19] Liu W, Wang J, Gong Y, Liao Q, Dang Q, Li Z, Bo Z. Angew Chem Int Ed, 2020, 59: 20161-20166 CrossRef Google Scholar

[20] Huang W, Zhang X, Chen B, Miao H, Trindle CO, Wang Y, Luo Y, Zhang G. Chem Commun, 2019, 55: 67-70 CrossRef Google Scholar

[21] Ma X, Xu C, Wang J, Tian H. Angew Chem Int Ed, 2018, 57: 10854-10858 CrossRef Google Scholar

[22] Wang D, Wang X, Xu C, Ma X. Sci China Chem, 2019, 62: 430-433 CrossRef Google Scholar

[23] Wang J, Fang Y, Li C, Niu L, Fang W, Cui G, Yang Q. Angew Chem Int Ed, 2020, 59: 10032-10036 CrossRef Google Scholar

[24] Zhou Z, Mao Z, Yang Z, Yang T, Zhu L, Long Y, Chi Z, Liu S, Aldred MP, Chen X, Xu J, Zhang Y. Sci China Chem, 2021, 64: 467-477 CrossRef Google Scholar

[25] Zang L, Shao W, Kwon MS, Zhang Z, Kim J. Adv Opt Mater, 2020, 8: 2000654 CrossRef Google Scholar

[26] Zhang T, Ma X, Wu H, Zhu L, Zhao Y, Tian H. Angew Chem Int Ed, 2020, 59: 11206-11216 CrossRef Google Scholar

[27] Gu L, Wu H, Ma H, Ye W, Jia W, Wang H, Chen H, Zhang N, Wang D, Qian C, An Z, Huang W, Zhao Y. Nat Commun, 2020, 11: 944 CrossRef ADS Google Scholar

[28] Wu H, Gu L, Baryshnikov GV, Wang H, Minaev BF, Ågren H, Zhao Y. ACS Appl Mater Interfaces, 2020, 12: 20765-20774 CrossRef Google Scholar

[29] Zhang T, Wang X, An Z, Fang Z, Zhang Y, Yuan WZ. ChemPhysChem, 2018, 19: 2389-2396 CrossRef Google Scholar

[30] Chen C, Chi Z, Chong KC, Batsanov AS, Yang Z, Mao Z, Yang Z, Liu B. Nat Mater, 2021, 20: 175-180 CrossRef ADS Google Scholar

[31] Chen B, Huang W, Su H, Miao H, Zhang X, Zhang G. Angew Chem Int Ed, 2020, 59: 10023-10026 CrossRef Google Scholar

[32] Zhou B, Yan D. Sci China Chem, 2020, 63: 423-425 CrossRef Google Scholar

[33] Wang J, Huang Z, Ma X, Tian H. Angew Chem Int Ed, 2020, 59: 9928-9933 CrossRef Google Scholar

[34] Lu B, Liu S, Yan D. Chin Chem Lett, 2019, 30: 1908-1922 CrossRef Google Scholar

[35] Qu G, Zhang Y, Ma X. Chin Chem Lett, 2019, 30: 1809-1814 CrossRef Google Scholar

[36] Hayashi T, Maeda K, Shida S, Nakada K. J Chem Phys, 1960, 32: 1568 CrossRef ADS Google Scholar

[37] Hayashi T, Maeda K. Bull Chem Soc Jpn, 1960, 33: 565-566 CrossRef Google Scholar

[38] Honda S, Oka M, Takagi H, Toyota T. Angew Chem Int Ed, 2019, 58: 144-148 CrossRef Google Scholar

[39] Zhang G, Palmer GM, Dewhirst MW, Fraser CL. Nat Mater, 2009, 8: 747-751 CrossRef ADS Google Scholar

[40] Wang H, Shi H, Ye W, Yao X, Wang Q, Dong C, Jia W, Ma H, Cai S, Huang K, Fu L, Zhang Y, Zhi J, Gu L, Zhao Y, An Z, Huang W. Angew Chem Int Ed, 2019, 58: 18776-18782 CrossRef Google Scholar

[41] Zhang T, Wu Y, Ma X. Chem Eng J, 2021, 412: 128689 CrossRef Google Scholar

[42] Wang Q, Dou X, Chen X, Zhao Z, Wang S, Wang Y, Sui K, Tan Y, Gong Y, Zhang Y, Yuan WZ. Angew Chem Int Ed, 2019, 58: 12667-12673 CrossRef Google Scholar

[43] Gao R, Fang X, Yan D. J Mater Chem C, 2018, 6: 4444-4449 CrossRef Google Scholar

[44] Ikeda H, Matsuo K, Matsui Y, Matsuoka M, Mizuno K. Bull Chem Soc Jpn, 2011, 84: 537-543 CrossRef Google Scholar

  • Scheme 1

    General synthetic route of the P1 and P2.

  • Figure 1

    Phosphorescence spectra of P1 upon increasing (a) exposure to UV light and (b) heating at 60 °C in the nitrogen atmosphere (λex = 358 nm). Phosphorescence spectra of P2 upon increasing (c) exposure to UV light, and (d) heating at 60 °C in the nitrogen atmosphere (λex = 371 nm) (color online).

  • Figure 2

    UV-Vis absorption spectra of (a) P1 and (b) P2 upon exposure to 365 nm ultraviolet light. Inset: the reversible photochromic process for P1 and P2. EPR spectra of (c) P1 and (d) P2 at 298 K (color online).

  • Figure 3

    Phosphorescence intensity of P1 (a, λem = 545 nm) and P2 (b, λem = 551 nm) after the exposure to UV light and heating alternatively. (c) Phosphorescent decay curves of P1 (λem = 545 nm; λex = 358 nm). (d) Phosphorescent decay curves of P2 (λem = 551 nm; λex = 371 nm) (color online).

  • Table 1   Photophysical data of P1 and P2 in the solid state

    Polymer

    λex (nm)

    λFluo (nm)

    λPhos (nm)

    τp (ms)

    Φ (%)a)

    P1

    358

    426

    545

    20.2

    8.2

    P2

    371

    439

    551

    2.1

    5.5

    Total quantum yield of photoluminescence at room temperature.

qqqq

Contact and support