logo

SCIENCE CHINA Chemistry, Volume 64 , Issue 7 : 1208-1218(2021) https://doi.org/10.1007/s11426-021-9975-9

Replacing alkyl side chain of non-fullerene acceptor with siloxane-terminated side chain enables lower surface energy towards optimizing bulk-heterojunction morphology and high photovoltaic performance

More info
  • ReceivedJan 26, 2021
  • AcceptedMar 5, 2021
  • PublishedMay 25, 2021

Abstract


Acknowledgment

This work was supported by the National Natural Science Foundation of China (51521002, U1401244, 51673070), the National Key Research and Development Program of China (2019YFA0705900), and the Basic and Applied Basic Research Major Program of Guangdong Province (2019B030302007).


Interest statement

The authors declare no conflict of interest.


Supplement

Supporting Information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Cui C, Li Y. Energy Environ Sci, 2019, 12: 3225-3246 CrossRef Google Scholar

[2] Mishra A. Energy Environ Sci, 2020, 13: 4738-4793 CrossRef Google Scholar

[3] Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip HL, Cao Y, Chen Y. Science, 2018, 361: 1094-1098 CrossRef PubMed ADS Google Scholar

[4] Hu Z, Ying L, Huang F, Cao Y. Sci China Chem, 2017, 60: 571-582 CrossRef Google Scholar

[5] Chen J, Cao Y. Acc Chem Res, 2009, 42: 1709-1718 CrossRef PubMed Google Scholar

[6] Heremans P, Cheyns D, Rand BP. Acc Chem Res, 2009, 42: 1740-1747 CrossRef PubMed Google Scholar

[7] Zhao F, Wang C, Zhan X. Adv Energy Mater, 2018, 8: 1703147 CrossRef Google Scholar

[8] Ma W, Tumbleston JR, Wang M, Gann E, Huang F, Ade H. Adv Energy Mater, 2013, 3: 864-872 CrossRef Google Scholar

[9] Li Y. Acc Chem Res, 2012, 45: 723-733 CrossRef PubMed Google Scholar

[10] Liu F, Zhou Z, Zhang C, Vergote T, Fan H, Liu F, Zhu X. J Am Chem Soc, 2016, 138: 15523-15526 CrossRef PubMed Google Scholar

[11] Xiao Z, Jia X, Li D, Wang S, Geng X, Liu F, Chen J, Yang S, Russell TP, Ding L. Sci Bull, 2017, 62: 1494-1496 CrossRef ADS Google Scholar

[12] Li S, Liu W, Li CZ, Shi M, Chen H. Small, 2017, 13: 1701120 CrossRef PubMed Google Scholar

[13] Yao H, Cui Y, Yu R, Gao B, Zhang H, Hou J. Angew Chem Int Ed, 2017, 56: 3045-3049 CrossRef PubMed Google Scholar

[14] Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140-1151 CrossRef Google Scholar

[15] Ma Y, Zhang M, Wan S, Yin P, Wang P, Cai D, Liu F, Zheng Q. Joule, 2021, 5: 197-209 CrossRef Google Scholar

[16] Fan Q, Su W, Wang Y, Guo B, Jiang Y, Guo X, Liu F, Russell TP, Zhang M, Li Y. Sci China Chem, 2018, 61: 531-537 CrossRef Google Scholar

[17] Wang J, Zhan X. Acc Chem Res, 2021, 54: 132-143 CrossRef PubMed Google Scholar

[18] Wang W, Zhao B, Cong Z, Xie Y, Wu H, Liang Q, Liu S, Liu F, Gao C, Wu H, Cao Y. ACS Energy Lett, 2018, 3: 1499-1507 CrossRef Google Scholar

[19] Yao H, Wang J, Xu Y, Zhang S, Hou J. Acc Chem Res, 2020, 53: 822-832 CrossRef PubMed Google Scholar

[20] Kini GP, Jeon SJ, Moon DK. Adv Mater, 2020, 32: 1906175 CrossRef PubMed Google Scholar

[21] Zheng B, Huo L, Li Y. NPG Asia Mater, 2020, 12: 3 CrossRef Google Scholar

[22] Li S, Li CZ, Shi M, Chen H. ACS Energy Lett, 2020, 5: 1554-1567 CrossRef Google Scholar

[23] Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L. Sci Bull, 2020, 65: 272-275 CrossRef ADS Google Scholar

[24] Wu J, Li G, Fang J, Guo X, Zhu L, Guo B, Wang Y, Zhang G, Arunagiri L, Liu F, Yan H, Zhang M, Li Y. Nat Commun, 2020, 11: 4612 CrossRef PubMed ADS Google Scholar

[25] Chai G, Chang Y, Zhang J, Xu X, Yu L, Zou X, Li X, Chen Y, Luo S, Liu B, Bai F, Luo Z, Yu H, Liang J, Liu T, Wong KS, Zhou H, Peng Q, Yan H. Energy Environ Sci, 2021, CrossRef Google Scholar

[26] Chang M, Meng L, Wang Y, Ke X, Yi YQQ, Zheng N, Zheng W, Xie Z, Zhang M, Yi Y, Zhang H, Wan X, Li C, Chen Y. Chem Mater, 2020, 32: 2593-2604 CrossRef Google Scholar

[27] Han Y, Song W, Zhang J, Xie L, Xiao J, Li Y, Cao L, Song S, Zhou E, Ge Z. J Mater Chem A, 2020, 8: 22155-22162 CrossRef Google Scholar

[28] Li M, Zhou Y, Yang L, Shen S, Liu Y, Chen Y, Song J, Bo Z. J Mater Chem A, 2020, 8: 22416-22422 CrossRef Google Scholar

[29] Zhang ZG, Li Y. Sci China Chem, 2015, 58: 192-209 CrossRef Google Scholar

[30] Li Y, Zheng N, Yu L, Wen S, Gao C, Sun M, Yang R. Adv Mater, 2019, 31: 1807832 CrossRef PubMed Google Scholar

[31] Zhang C’, Feng S, Liu Y, Hou R, Zhang Z, Xu X, Wu Y, Bo Z. ACS Appl Mater Interfaces, 2017, 9: 33906-33912 CrossRef PubMed Google Scholar

[32] Liu T, Pan X, Meng X, Liu Y, Wei D, Ma W, Huo L, Sun X, Lee TH, Huang M, Choi H, Kim JY, Choy WCH, Sun Y. Adv Mater, 2017, 29: 1604251 CrossRef PubMed Google Scholar

[33] Xue L, Yang Y, Xu J, Zhang C, Bin H, Zhang ZG, Qiu B, Li X, Sun C, Gao L, Yao J, Chen X, Yang Y, Xiao M, Li Y. Adv Mater, 2017, 29: 1703344 CrossRef PubMed Google Scholar

[34] Yang Y, Liu Z, Zhang G, Zhang X, Zhang D. Adv Mater, 2019, 31: 1903104 CrossRef PubMed Google Scholar

[35] Shen F, Xu J, Li X, Zhan C. J Mater Chem A, 2018, 6: 15433-15455 CrossRef Google Scholar

[36] Tong Y, Xiao Z, Du X, Zuo C, Li Y, Lv M, Yuan Y, Yi C, Hao F, Hua Y, Lei T, Lin Q, Sun K, Zhao D, Duan C, Shao X, Li W, Yip HL, Xiao Z, Zhang B, Bian Q, Cheng Y, Liu S, Cheng M, Jin Z, Yang S, Ding L. Sci China Chem, 2020, 63: 758-765 CrossRef Google Scholar

[37] Zhang G, Zhao J, Chow PCY, Jiang K, Zhang J, Zhu Z, Zhang J, Huang F, Yan H. Chem Rev, 2018, 118: 3447-3507 CrossRef PubMed Google Scholar

[38] Wei Q, Liu W, Leclerc M, Yuan J, Chen H, Zou Y. Sci China Chem, 2020, 63: 1352-1366 CrossRef Google Scholar

[39] Mei J, Kim DH, Ayzner AL, Toney MF, Bao Z. J Am Chem Soc, 2011, 133: 20130-20133 CrossRef PubMed Google Scholar

[40] Lee J, Han AR, Kim J, Kim Y, Oh JH, Yang C. J Am Chem Soc, 2012, 134: 20713-20721 CrossRef PubMed Google Scholar

[41] Kim Y, Long DX, Lee J, Kim G, Shin TJ, Nam KW, Noh YY, Yang C. Macromolecules, 2015, 48: 5179-5187 CrossRef ADS Google Scholar

[42] Lei H, Huang B, Chen L, Chen S, Xu G, Huang S, Tan Y, Yang C, Chen Y. Sol RRL, 2019, 3: 1900122 CrossRef Google Scholar

[43] Lee SM, Lee HR, Dutta GK, Lee J, Oh JH, Yang C. Polym Chem, 2019, 10: 2854-2862 CrossRef Google Scholar

[44] Lee J, Han AR, Yu H, Shin TJ, Yang C, Oh JH. J Am Chem Soc, 2013, 135: 9540-9547 CrossRef PubMed Google Scholar

[45] Liu X, Nian L, Gao K, Zhang L, Qing L, Wang Z, Ying L, Xie Z, Ma Y, Cao Y, Liu F, Chen J. J Mater Chem A, 2017, 5: 17619-17631 CrossRef Google Scholar

[46] Jiang H, Pan F, Zhang L, Zhou X, Wang Z, Nian Y, Liu C, Tang W, Ma Q, Ni Z, Chen M, Ma W, Cao Y, Chen J. ACS Appl Mater Interfaces, 2019, 11: 29094-29104 CrossRef PubMed Google Scholar

[47] Wang Z, Liu X, Jiang H, Zhou X, Zhang L, Pan F, Qiao X, Ma D, Ma W, Ding L, Cao Y, Chen J. Sol RRL, 2019, 3: 1900079 CrossRef Google Scholar

[48] Wang Z, Jiang H, Liu X, Liang J, Zhang L, Qing L, Wang Q, Zhang W, Cao Y, Chen J. J Mater Chem A, 2020, 8: 7765-7774 CrossRef Google Scholar

[49] Yuan D, Zhong A, Zhang L, Chen W, Jiang H, Ye Q, Liu C, Chen J, Cao Y. Synth Met, 2019, 256: 116116 CrossRef Google Scholar

[50] Wang Q, Hu Z, Wu Z, Lin Y, Zhang L, Liu L, Ma Y, Cao Y, Chen J. ACS Appl Mater Interfaces, 2020, 12: 4659-4672 CrossRef PubMed Google Scholar

[51] Yuan D, Pan F, Zhang L, Jiang H, Chen M, Tang W, Qin G, Cao Y, Chen J. Sol RRL, 2020, 4: 2000062 CrossRef Google Scholar

[52] Tang Z, Xu X, Li R, Yu L, Meng L, Wang Y, Li Y, Peng Q. ACS Appl Mater Interfaces, 2020, 12: 17760-17768 CrossRef PubMed Google Scholar

[53] Xu W, Zhang M, Xiao J, Zeng M, Ye L, Weng C, Zhao B, Zhang J, Tan S. Polym Chem, 2020, 11: 6178-6186 CrossRef Google Scholar

[54] Wu Z, Qiu R, Jiang H, Wang Q, Chen Y, Liu H, Xie S, Yip HL, Zhang L, Chen J. Org Electron, 2021, 91: 106087 CrossRef Google Scholar

[55] Bin H, Zhang ZG, Gao L, Chen S, Zhong L, Xue L, Yang C, Li Y. J Am Chem Soc, 2016, 138: 4657-4664 CrossRef PubMed Google Scholar

[56] Zhang ZG, Bai Y, Li Y. Chin J Polym Sci, 2021, 39: 1-13 CrossRef Google Scholar

[57] Li D, Zhang X, Liu D, Wang T. J Mater Chem A, 2020, 8: 15607-15619 CrossRef Google Scholar

[58] Dai S, Zhou J, Chandrabose S, Shi Y, Han G, Chen K, Xin J, Liu K, Chen Z, Xie Z, Ma W, Yi Y, Jiang L, Hodgkiss JM, Zhan X. Adv Mater, 2020, 32: 2000645 CrossRef PubMed Google Scholar

[59] Wu Q, Deng D, Zhou R, Zhang J, Zou W, Liu L, Wu S, Lu K, Wei Z. ACS Appl Mater Interfaces, 2020, 12: 25100-25107 CrossRef PubMed Google Scholar

[60] Zhao B, Wang W, Xie Y, Zhao H, Wang L, Liu S, Xin J, Cong Z, Wu H, Liang Q, Ma W, Gao C, Wu H, Cao Y. J Mater Chem A, 2020, 8: 22335-22345 CrossRef Google Scholar

[61] Pan F, Zhang L, Jiang H, Yuan D, Nian Y, Cao Y, Chen J. J Mater Chem A, 2019, 7: 9798-9806 CrossRef Google Scholar

[62] Lenes M, Morana M, Brabec CJ, Blom PWM. Adv Funct Mater, 2009, 19: 1106-1111 CrossRef Google Scholar

  • Figure 1

    (a) Side chain engineering to optimize matching between a polymer donor and a molecular acceptor. Replacing alkyl side chains in molecular acceptors with siloxane-terminated side chains would induce lower surface energy, supplying a new driving force to optimize bulk-heterojunction morphology. (b) Chemical structures of i-IE-4F and i-IESi-4F with alkyl and siloxane-terminated side chains on the central IDT core, respectively. (c) Chemical structures of polymer donors J52 and PBZ-2Si with alkyl and siloxane-terminated side chains on the 2-dimensional BDT unit, respectively (coloronline).

  • Figure 2

    The synthesis routes of i-IE-4F and i-IESi-4F.

  • Figure 3

    (a) UV-vis absorption spectra of thin films of J52, PBZ-2Si, i-IE-4F, and i-IESi-4F. (b) Energy level diagrams of J52, PBZ-2Si, i-IE-4F, and i-IESi-4F (color online).

  • Figure 4

    (a) J-V curves, (b) EQE spectra, (c) Jph vs. Veff curves, and (d) Jsc vs. the light intensity of the optimized PSCs for the D0:A0, D0:ASi, and DSi:ASi matching (color online).

  • Figure 5

    (a–c) AFM height images, (d–f) AFM phase images and (g–i) TEM images of the optimized blend films for J52:i-IE-4F, J52:i-IESi-4F, and PBZ-2Si:i-IESi-4F (color online).

  • Figure 6

    2D GIWAXS images of pristine films for J52 (a), PBZ-2Si (b), i-IE-4F (c), and i-IESi-4F (d) as well as the optimized blend films for J52:i-IE-4F (e), J52:i-IESi-4F (f), and PBZ-2Si:i-IESi-4F (g). (h) Line-cut profiles along IP and OOP directions for the corresponding films (color online).

  • Table 1   Summary of optical and electrical properties of NFAs

    Acceptor

    λmax (nm)

    εmax (M−1 cm−1)

    Eg (eV)

    HOMO (eV)

    LUMO (eV)

    μe(cm2/(V s))

    Solution

    Film

    i-IE-4F

    726

    757

    2.2×105

    1.51

    −5.43

    −3.79

    7.8×10−5

    i-IESi-4F

    726

    760

    1.9×105

    1.51

    −5.50

    −3.71

    3.1×10−4

  • Table 2   Contact angles and surface energy parameters of pristine films a)

    Film

    Contact angle

    γd (mN/m)

    γp (mN/m)

    γ (mN/m)

    χ

    θwater (º)

    θoil (º)

    J52

    PBZ-2Si

    i-IE-4F

    100.5

    41.3

    38.93

    0.90

    39.83

    9.3×10−2K

    31.1×10−2K

    i-IESi-4F

    96.6

    54.2

    31.88

    1.44

    33.32

    5.4×10−2K

    0.04×10−2K

    J52

    96.1

    49.8

    32.68

    3.4

    36.08

    PBZ-2Si

    100.3

    54.9

    30.85

    2.25

    33.10

    The γd and γp represent the surface free energies generated from the dispersion force and polar force, respectively.

  • Table 3   Optimized photovoltaic parameters of the D0:A0, D0:ASi, and DSi:ASi matchings

    Active layer

    Conditions

    Voc (V)

    Jsc (mA/cm2)

    FF (%)

    PCEa) (%)

    J52:i-IE-4F

    TA 130 °C 10 min

    0.84

    18.34

    47.57

    7.34 (6.96)

    J52:i-IESi-4F

    TA 130 °C 5 min

    0.85

    21.93

    67.97

    12.67 (12.22)

    PBZ-2Si:i-IESi-4F

    TA 110 °C 5 min

    0.87

    22.55

    74.03

    14.54 (14.20)

    The average PCEs are obtained from 10 devices.

qqqq

Contact and support