logo

SCIENCE CHINA Chemistry, Volume 64 , Issue 6 : 1057-1062(2021) https://doi.org/10.1007/s11426-021-9974-5

Dual-function surfactant strategy for two-dimensional organic semiconductor crystals towards high-performance organic field-effect transistors

More info
  • ReceivedJan 6, 2021
  • AcceptedMar 1, 2021
  • PublishedMar 8, 2021

Abstract


Funded by

the Ministry of Science and Technology of China(2016YFB0401100,2017YFA0204503,2018YFA0703200)

the National Natural Science Foundation of China(91833306,51633006,51703159,51733004,51725304,52003189,21875158)

the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB12030300)

and the China Postdoctoral Science Foundation(2020M680875)


Acknowledgment

This work was supported by the Ministry of Science and Technology of China (2016YFB0401100, 2017YFA0204503, and 2018YFA0703200), the National Natural Science Foundation of China (91833306, 51633006, 51703159, 51733004, 51725304, 52003189 and 21875158), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB12030300), and the China Postdoctoral Science Foundation (2020M680875)


Interest statement

The authors declare no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science, 2004, 306: 666-669 CrossRef PubMed ADS arXiv Google Scholar

[2] Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK. Proc Natl Acad Sci USA, 2005, 102: 10451-10453 CrossRef PubMed ADS arXiv Google Scholar

[3] Tung VC, Allen MJ, Yang Y, Kaner RB. Nat Nanotech, 2009, 4: 25-29 CrossRef PubMed ADS Google Scholar

[4] Wang Z, Li R, Su C, Loh KP. SmartMat, 2020, 1: e1013 CrossRef Google Scholar

[5] Chaturvedi A, Chen B, Zhang K, He Q, Nam G, You L, Lai Z, Tan C, Tran TH, Liu G, Zhou J, Liu Z, Wang J, Teo EHT, Zhang H. SmartMat, 2020, 1: e1011 CrossRef Google Scholar

[6] Champness NR. Nat Chem, 2014, 6: 757-759 CrossRef PubMed ADS Google Scholar

[7] Zhang Y, Qiao J, Gao S, Hu F, He D, Wu B, Yang Z, Xu B, Li Y, Shi Y, Ji W, Wang P, Wang X, Xiao M, Xu H, Xu JB, Wang X. Phys Rev Lett, 2016, 116: 016602 CrossRef PubMed ADS arXiv Google Scholar

[8] Fu B, Wang C, Sun Y, Yao J, Wang Y, Ge F, Yang F, Liu Z, Dang Y, Zhang X, Shao X, Li R, Hu W. Adv Mater, 2019, 31: 1901437 CrossRef PubMed Google Scholar

[9] Yao Y, Chen Y, Wang H, Samorì P. SmartMat, 2020, 1: e1009 CrossRef Google Scholar

[10] Yu X, Zheng L, Li J, Wang L, Han J, Chen H, Zhang X, Hu W. Sci China Chem, 2019, 62: 251-255 CrossRef Google Scholar

[11] Kong L, Tang C, Peng H, Huang J, Zhang Q. SmartMat, 2020, 1: e1007 CrossRef Google Scholar

[12] Shi C, Zhang Q, Tian H, Qu D. SmartMat, 2020, 1: e1012 CrossRef Google Scholar

[13] Yang F, Cheng S, Zhang X, Ren X, Li R, Dong H, Hu W. Adv Mater, 2018, 30: 1702415 CrossRef PubMed Google Scholar

[14] Smits ECP, Mathijssen SGJ, van Hal PA, Setayesh S, Geuns TCT, Mutsaers KAHA, Cantatore E, Wondergem HJ, Werzer O, Resel R, Kemerink M, Kirchmeyer S, Muzafarov AM, Ponomarenko SA, de Boer B, Blom PWM, de Leeuw DM. Nature, 2008, 455: 956-959 CrossRef ADS Google Scholar

[15] Wang Y, Sun L, Wang C, Yang F, Ren X, Zhang X, Dong H, Hu W. Chem Soc Rev, 2019, 48: 1492-1530 CrossRef PubMed Google Scholar

[16] Tan C, Zeng Z, Huang X, Rui X, Wu XJ, Li B, Luo Z, Chen J, Chen B, Yan Q, Zhang H. Angew Chem Int Ed, 2015, 54: 1841-1845 CrossRef PubMed Google Scholar

[17] Zhu W, Zheng R, Fu X, Fu H, Shi Q, Zhen Y, Dong H, Hu W. Angew Chem Int Ed, 2015, 54: 6785-6789 CrossRef PubMed Google Scholar

[18] Jiang L, Dong H, Meng Q, Li H, He M, Wei Z, He Y, Hu W. Adv Mater, 2011, 23: 2059-2063 CrossRef PubMed Google Scholar

[19] Wang L, Wang C, Yu X, Zheng L, Zhang X, Hu W. Sci China Mater, 2019, 63: 122-127 CrossRef Google Scholar

[20] Fu XL, Wang CL, Li RJ, Dong HL, Hu WP. Sci China Chem, 2010, 53: 1225-1234 CrossRef Google Scholar

[21] Liu J, Jiang L, Hu W, Liu Y, Zhu D. Sci China Chem, 2019, 62: 313-330 CrossRef Google Scholar

[22] Zhang Y, Yang S, Zhu X, Zhai F, Feng Y, Feng W, Zhang X, Li R, Hu W. Sci China Chem, 2020, 63: 973-979 CrossRef Google Scholar

[23] Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA. Nature, 1997, 389: 827-829 CrossRef ADS Google Scholar

[24] Wang Q, Qian J, Li Y, Zhang Y, He D, Jiang S, Wang Y, Wang X, Pan L, Wang J, Wang X, Hu Z, Nan H, Ni Z, Zheng Y, Shi Y. Adv Funct Mater, 2016, 26: 3191-3198 CrossRef Google Scholar

[25] Wang C, Ren X, Xu C, Fu B, Wang R, Zhang X, Li R, Li H, Dong H, Zhen Y, Lei S, Jiang L, Hu W. Adv Mater, 2018, 30: 1706260 CrossRef PubMed Google Scholar

[26] Xu C, He P, Liu J, Cui A, Dong H, Zhen Y, Chen W, Hu W. Angew Chem Int Ed, 2016, 55: 9519-9523 CrossRef PubMed Google Scholar

[27] Wang Q, Yang F, Zhang Y, Chen M, Zhang X, Lei S, Li R, Hu W. J Am Chem Soc, 2018, 140: 5339-5342 CrossRef PubMed Google Scholar

[28] Yao J, Zhang Y, Tian X, Zhang X, Zhao H, Zhang X, Jie J, Wang X, Li R, Hu W. Angew Chem Int Ed, 2019, 58: 16082-16086 CrossRef PubMed Google Scholar

[29] Wang L, Li Y, Zou F, Du H, Sun L, Zhang J, Song X, Song G. RSC Adv, 2016, 6: 3532-3538 CrossRef ADS Google Scholar

[30] Li G, Yao Y, Yang H, Shrotriya V, Yang G, Yang Y. Adv Funct Mater, 2007, 17: 1636-1644 CrossRef Google Scholar

[31] Chang JF, Sun B, Breiby DW, Nielsen MM, Sölling TI, Giles M, McCulloch I, Sirringhaus H. Chem Mater, 2004, 16: 4772-4776 CrossRef Google Scholar

[32] Kim YH, Lee YU, Han JI, Han SM, Han MK. J Electrochem Soc, 2007, 154: H995 CrossRef ADS Google Scholar

[33] Park SK, Jackson TN, Anthony JE, Mourey DA. Appl Phys Lett, 2007, 91: 063514 CrossRef ADS Google Scholar

[34] Izawa T, Miyazaki E, Takimiya K. Adv Mater, 2008, 20: 3388-3392 CrossRef Google Scholar

[35] Soeda J, Uemura T, Mizuno Y, Nakao A, Nakazawa Y, Facchetti A, Takeya J. Adv Mater, 2011, 23: 3681-3685 CrossRef PubMed Google Scholar

[36] Ionescu AM, Riel H. Nature, 2011, 479: 329-337 CrossRef PubMed ADS Google Scholar

[37] Sakai S, Soeda J, Häusermann R, Matsui H, Mitsui C, Okamoto T, Ito M, Hirose K, Sekiguchi T, Abe T, Uno M, Takeya J. Org Electron, 2015, 22: 1-4 CrossRef Google Scholar

[38] Zheng X, Chen B, Dai J, Fang Y, Bai Y, Lin Y, Wei H, Zeng XC, Huang J. Nat Energy, 2017, 2: 17102 CrossRef ADS Google Scholar

[39] Deng Y, Zheng X, Bai Y, Wang Q, Zhao J, Huang J. Nat Energy, 2018, 3: 560-566 CrossRef ADS Google Scholar

[40] Liu C, Li Y, Xu Y, Minari T, Li S, Takimiya K, Tsukagoshi K. Org Electron, 2012, 13: 2975-2984 CrossRef Google Scholar

[41] Colella S, Ruzié C, Schweicher G, Arlin JB, Karpinska J, Geerts Y, Samorì P. ChemPlusChem, 2014, 79: 371-374 CrossRef PubMed Google Scholar

[42] Hu W, Zhang H, Salaita K, Sirringhaus H. SmartMat, 2020, 1: e1014 CrossRef Google Scholar

  • Figure 1

    (a) Schematic diagram of growth and transfer of 2DOSCs with 10 ppm phosphatidylcholine. The bright-field OM images and the corresponding POM images of 2DOSCs of (b) C6–DPA, (c) C12–BTBT and (d) TFT–CN, and the uniform color-change in POM images confirm that the 2DOSCs domains are single crystals (color online).

  • Figure 2

    Out-of-plane XRD patterns of the 2DOSCs on OTS-modified SiO2/Si substrates of (a) C6–DPA, (b) C12–BTBT and (c) TFT–CN, suggesting the layer-by-layer stacking motif of 2DOSCs. AFM images of 2DOSCs on the OTS-modified SiO2/Si substrates of (d) C6–DPA, (e) C12–BTBT and (f) TFT–CN. (g–j) TEM image and the corresponding SAED patterns of individual C6–DPA 2DOSC, the identical SAED patterns at different parts of 2DOSC in (g) confirming its single crystal nature (color online).

  • Figure 3

    Representative transfer IV curves of 2DOSCs-based OFETs on the OTS-modified SiO2/Si substrates of (a) C6–DPA, (b) C12–BTBT and (c) TFT–CN. Representative output IV curves of 2DOSCs-based OFETs on OTS modified SiO2/Si substrates of (d) C6–DPA, (e) C12–BTBT and (f) TFT–CN (color online).

  • Figure 4

    Transfer IV curves of 2DOSCs-based OFETs from 10 devices of (a) C6–DPA with phosphatidylcholine, (b) C6–DPA without phosphatidylcholine, (c) C12–BTBT with phosphatidylcholine and (d) TFT–CN with phosphatidylcholine.

  • Table 1   Comparison of the electrical characteristics of C6–DPA 2DOSCs-based OFETs with different concentration of phosphatidylcholine. (These parameters are average values, and the mobilities include average mobility and standard deviation)

    Concentration

    Mobility (cm2 V−1 s−1)

    Threshold voltage (V)

    On/off ratio

    Subthreshold slope (V/dec)

    10 ppm

    2.0 (0.36)

    −3.5

    1.5×107

    0.52

    0

    0.5 (0.20)

    −7.4

    1.3×107

    1.01

qqqq

Contact and support