logo

Catalytic chemodivergent annulations between α-diketones and alkynyl α-diketones

More info
  • ReceivedJan 27, 2021
  • AcceptedFeb 25, 2021
  • PublishedApr 29, 2021

Abstract


Funded by

National Natural Science Foundation of China(21871260,22071242)

the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB20000000)

Fujian Natural Science Foundation(2018J05035)

the China Postdoctoral Science Foundation(2018M630734)

the Science and Technology Research Program of the Education Department of Jiangxi Province(GJJ1991151)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21871260, 22071242), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000), Fujian Natural Science Foundation (2018J05035), the China Postdoctoral Science Foundation (2018M630734) and the Science and Technology Research Program of the Education Department of Jiangxi Province (GJJ1991151).


Interest statement

The authors declare no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Beletskaya IP, Nájera C, Yus M, Zhan G, Du W, Chen YC, Nájera C, Beletskaya IP, Yus M, Krautwald S, Carreira EM, Wu B, Parquette JR, RajanBabu TV, Guo C, Fleige M, Janssen-Müller D, Daniliuc CG, Glorius F, Zhou Z, Wang ZX, Zhou YC, Xiao W, Ouyang Q, Du W, Chen YC, Du X, Zhang Y, Peng D, Huang Z, Xiao W, Yang QQ, Chen Z, Ouyang Q, Du W, Chen YC, Pradhan TR, Kim HW, Park JK, Mei LY, Wei Y, Tang XY, Shi M, Wang M, Zhang X, Zhuang YX, Xu YH, Loh TP, Ma C, Zhang T, Zhou JY, Mei GJ, Shi F, Jiang F, Zhao D, Yang X, Yuan FR, Mei GJ, Shi F, Zhang HH, Zhu ZQ, Fan T, Liang J, Shi F. Chem Soc Rev, 2020, 49: 7101-7166 CrossRef Google Scholar

[2] Colomer I, Velado M, Fernández de la Pradilla R, Viso A, Tabolin AA, Ioffe SL, Song ZL, Fan CA, Tu YQ, Korb M, Lang H, Zhang XM, Tu YQ, Zhang FM, Chen ZH, Wang SH, West TH, Spoehrle SSM, Kasten K, Taylor JE, Smith AD, Zhu Y, Sun L, Lu P, Wang Y. Chem Rev, 2017, 117: 14201-14243 CrossRef Google Scholar

[3] Paul MC, Zubía E, Ortega MJ, Salvá J, Uchida R, Lee D, Suwa I, Ohtawa M, Watanabe N, Demachi A, Ohte S, Katagiri T, Nagamitsu T, Tomoda H, Akiyama H, Indananda C, Thamchaipenet A, Motojima A, Oikawa T, Komaki H, Hosoyama A, Kimura A, Oku N, Igarashi Y, Kuroda K, Yoshida M, Uosaki Y, Ando K, Kawamoto I, Oishi E, Onuma H, Yamada K, Matsuda Y, Fujiwara K, Tsukamoto H, Izumikawa M, Hosoya T, Kagaya N, Takagi M, Yamamura H, Hayakawa M, Shin-ya K, Doi T, Burns AS, Rychnovsky SD, Zhang ZX, Wu PQ, Li HH, Qi FM, Fei DQ, Hu QL, Liu YH, Huang XL, Xu LL, Chen HL, Hai P, Gao Y, Xie CD, Yang XL, Abe I, Pan LL, Fang PL, Zhang XJ, Ni W, Li L, Yang LM, Chen CX, Zheng YT, Li CT, Hao XJ, Liu HY, He J, Xu JK, Zhang J, Bai HJ, Ma BZ, Cheng YC, Zhang WK, Tsai IL, Lee FP, Wu CC, Duh CY, Ishikawa T, Chen JJ, Chen YC, Seki H, Chen IS, Gutekunst WR, Baran PS, Yang CS, Wang XB, Wang JS, Luo JG, Luo J, Kong LY, Marko D, Habermeyer M, Kemény M, Weyand U, Niederberger E, Frank O, Hofmann T. Tetrahedron, 1997, 53: 2303-2308 CrossRef Google Scholar

[4] Hartmann O, Kalesse M, Liu H, Siegel DR, Danishefsky SJ, Burns AS, Rychnovsky SD. Org Lett, 2012, 14: 3064-3067 CrossRef Google Scholar

[5] Lewis FD, Quillen SL, Hale PD, Oxman JD, Crimmins MT, Lee-Ruff E, Mladenova G, Iriondo-Alberdi J, Greaney MF, Bach T, Hehn JP, Leigh WJ, Lewis TJ, Lin V, Postigo JA. J Am Chem Soc, 1988, 110: 1261-1267 CrossRef Google Scholar

[6] Gutekunst WR, Baran PS, Gutekunst WR, Baran PS. J Org Chem, 2014, 79: 2430-2452 CrossRef Google Scholar

[7] Kong X, Zhang G, Yang S, Liu X, Fang X, Kong X, Song J, Liu J, Meng M, Yang S, Zeng M, Zhan X, Li C, Fang X, Liu J, Das DK, Zhang G, Yang S, Zhang H, Fang X, Li X, Kong X, Yang S, Meng M, Zhan X, Zeng M, Fang X, Nagaraju S, Liu S, Liu J, Yang S, Liu R, Chen Z, Paplal B, Fang X, Chen Z, Yu F, Liu R, Lin X, Yang S, Liu J, Chen B, Nagaraju S, Zeng M, Ding C, Fang X, Liu R, Yang S, Chen Z, Kong X, Ding H, Fang X, Liu W, Niu S, Zhao Z, Yang S, Liu J, Li Y, Fang X. Adv Synth Catal, 2017, 359: 2729-2734 CrossRef Google Scholar

[8] Huang Y, Liao J, Wang W, Liu H, Guo H, Wei Y, Shi M, Ni H, Chan WL, Lu Y, Guo H, Fan YC, Sun Z, Wu Y, Kwon O, Karanam P, Reddy GM, Koppolu SR, Lin W, Wang T, Han X, Zhong F, Yao W, Lu Y, Li W, Zhang J, Wang Z, Xu X, Kwon O. Chem Commun, 2020, 56: 15235-15281 CrossRef Google Scholar

[9] Sriramurthy V, Barcan GA, Kwon O, Sriramurthy V, Kwon O, Kamijo S, Kanazawa C, Yamamoto Y, Saleh N, Voituriez A, Kishi K, Takizawa S, Sasai H. J Am Chem Soc, 2007, 129: 12928-12929 CrossRef Google Scholar

[10] Shi L, Tan DH, Yan TC, Jiang DH, Hou MX, Ohsumi K, Masaki T, Takase S, Watanabe M, Fujie A, Adinolfi M, Corsaro MM, De Castro C, Evidente A, Lanzetta R, Molinaro A, Parrilli M, Feng Z, Hellberg MR, Sharif NA, McLaughlin MA, Williams GW, Scott D, Wallace T, Zhang X, Shi G, Sun Y, Wu X, Zhao Y, Zhang X, Shi G, Liu M, Chen R, Wu X, Zhao Y. J Asian Nat Products Res, 2018, 20: 182-187 CrossRef Google Scholar

[11] Li B, Ali AIM, Ge H, Samuel IDW, Turnbull GA, Zhan G, Liu Z, Bian Z, Huang C, Xia H, Xie K, Zou G, Anthony SP, Gao M, Tang BZ. Chem, 2020, 6: 2591-2657 CrossRef Google Scholar

[12] Yuan WZ, Shen XY, Zhao H, Lam JWY, Tang L, Lu P, Wang C, Liu Y, Wang Z, Zheng Q, Sun JZ, Ma Y, Tang BZ, Gong Y, Zhao L, Peng Q, Fan D, Yuan WZ, Zhang Y, Tang BZ, Wang CR, Gong YY, Yuan WZ, Zhang YM. J Phys Chem C, 2010, 114: 6090-6099 CrossRef Google Scholar

[13] Luo J, Xie Z, Lam JWY, Cheng L, Tang BZ, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Hong Y, Lam JWY, Tang BZ, Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ, Liang J, Tang BZ, Liu B, Huang J, Nie H, Zeng J, Zhuang Z, Gan S, Cai Y, Guo J, Su SJ, Zhao Z, Tang BZ, Wu YH, Huang K, Chen SF, Chen YZ, Tung CH, Wu LZ, Li J, Gao H, Liu R, Chen C, Zeng S, Liu Q, Ding D, Liu Y, Wu G, Yang Z, Rouh H, Katakam N, Ahmed S, Unruh D, Cui Z, Lischka H, Li G. Chem Commun, 2001, : 1740-1741 CrossRef Google Scholar

  • Figure 1

    Bioactive natural products containing HFO (a), HBHO (b), DCB (c), and FCE (d) skeletons (color online).

  • Scheme 1

    Synthetic methods towards HFO, HBHO, and DCB skeletons. (a) Known method for the synthesis of HFO. (b) Danishefsky’s method for the synthesis of HBHO. (c) Rychnovsky and Burns’ method for the synthesis of HBHO. (d) [2+2] annulation of styrene. (e) Baran’s method for the synthesis of cis-1,3-diaryl cyclobutane. (f) This work (color online).

  • Figure 2

    (a) Selected illuminant compounds under visible light and ultraviolet irradiation at 365 nm. (b) The AIE effect of selected 3. (c) The UV-Vis absorption spectra of selected 3 as amorphous powders (T = 298 K). (d) The emission spectra of selected 3 as amorphous powders (T = 298 K, excited at the respective λmax 440 nm) (color online).

  • Scheme 2

    Asymmetric formation of 5a and synthetic applications of the products. (a) Asymmetric synthesis of 5a. (b) Hydrolysis of 3a. (c) Further transformations on 5a (color online).

  • Scheme 3

    Postulated mechanism leading to 3a and 4a (a), 5a (b) and 6a (c). (color online).

  • Table 1   Condition optimization for divergent formation of 3a and 4aa) (color online)

    entry

    cat. (mol %)

    solvent

    yields (%)

    3a

    4a

    1

    PPh3 (20)

    toluene

    63

    2

    PPh3 (20)

    CH2Cl2

    81

    3

    PPh3 (20)

    CH3CN

    61

    4

    PPh3 (20)

    THF

    34

    5

    PPh3 (20)

    1,4-dioxane

    17

    6

    PPh3 (20)

    MeOH

    99

    7

    K2CO3 (20)

    toluene

    37

    8

    KOH (20)

    toluene

    29

    9

    K3PO4 (20)

    toluene

    45

    10

    Cs2CO3 (20)

    toluene

    74

    11

    Cs2CO3 (20)

    CH2Cl2

    38

    12

    Cs2CO3 (20)

    CH3CN

    56

    13

    Cs2CO3 (20)

    THF

    65

    14

    Cs2CO3 (20)

    MeOH

    45

    15

    Et3N (20)

    toluene

    trace

    16

    DBU (20)

    toluene

    trace

    Reaction conditions: 1a (0.2 mmol), 2a (0.24 mmol), cat. (20 mol%), solvent (1 mL), rt, 5 h, under argon atmosphere. The diastereomeric ratio was determined via 1H NMR analysis of the reaction mixtures. All yields were isolated yields based on 1a.

  • Table 2   Scope of HFO formation a) (color online)

    Reaction conditions: 1 (0.2 mmol), 2 (0.24 mmol), PPh3 (20 mol%), MeOH (1 mL), rt, 5 h, under argon atmosphere. All yields were isolated yields based on 1. b) E/Z = 10:1. c) E/Z = 18:1. d) E/Z = 19:1. e) E/Z = 14:1.

  • Table 3   Scope of DCB formation a) (color online)

    Reaction conditions: 1 (0.4 mmol), 2 (0.48 mmol), PPh3 (20 mol%), MeOH (1 mL), 5 h, then toluene (1 mL), 36 W floodlight irradiation, rt, 48 h, under argon atmosphere. The diastereomeric ratios were determined via 1H NMR analysis of the reaction mixtures. All yields were isolated yields based on 1. b) E-3b and Z-3b were isolated in 29% yield with the ratio of 3:1. c) The reaction was run for 4 days.

  • Table 4   Scope of HBHO formation a) (color online)

    Reaction conditions: 1 (0.2 mmol), 2 (0.24 mmol), Cs2CO3 (20 mol%), toluene (1 mL), rt, 5 h, under argon atmosphere. The diastereomeric ratios were determined via 1H NMR analysis of the reaction mixtures. All yields were isolated yields based on 1.

  • Table 5   Scope of FCE formation a) (color online)

    Reaction conditions: 1 (0.8 mmol), 2 (0.2 mmol), Cs2CO3 (20 mol%), toluene (1 mL), 45 °C, 7 h, under argon atmosphere. The diastereomeric ratios were determined via 1H NMR analysis of the reaction mixtures. All yields were isolated yields based on 2.

qqqq

Contact and support