SCIENCE CHINA Chemistry, Volume 64 , Issue 7 : 1200-1207(2021) https://doi.org/10.1007/s11426-021-1026-6

Modulation of terminal alkyl chain length enables over 15% efficiency in small-molecule organic solar cells

More info
  • ReceivedFeb 5, 2021
  • AcceptedMay 11, 2021
  • PublishedJun 15, 2021


Funded by

the National Natural Science Foundation of China(21734008,21835006,51873217)

Beijing National Laboratory for Molecular Sciences(BNLMS-CXXM-201903)


This work was supported by the National Natural Science Foundation of China (21734008, 21835006, 51873217) and Beijing National Laboratory for Molecular Sciences (BNLMS-CXXM-201903).

Interest statement

The authors declare no conflict of interest.


Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


[1] Collins SD, Ran NA, Heiber MC, Nguyen TQ. Adv Energy Mater, 2017, 7: 1602242 CrossRef Google Scholar

[2] He C, Hou J. Acta Physico-Chim Sin, 2018, 34: 1202-1210 CrossRef Google Scholar

[3] Zhang Q, Kan B, Liu F, Long G, Wan X, Chen X, Zuo Y, Ni W, Zhang H, Li M, Hu Z, Huang F, Cao Y, Liang Z, Zhang M, Russell TP, Chen Y. Nat Photon, 2015, 9: 35-41 CrossRef ADS Google Scholar

[4] Cheng X, Li M, Guo Z, Yu J, Lu G, Bu L, Ye L, Ade H, Chen Y, Geng Y. J Mater Chem A, 2019, 7: 23008-23018 CrossRef Google Scholar

[5] Liang RZ, Babics M, Seitkhan A, Wang K, Geraghty PB, Lopatin S, Cruciani F, Firdaus Y, Caporuscio M, Jones DJ, Beaujuge PM. Adv Funct Mater, 2017, 28: 1705464 CrossRef Google Scholar

[6] Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L. Sci Bull, 2020, 65: 272-275 CrossRef ADS Google Scholar

[7] Cui Y, Yao H, Zhang J, Xian K, Zhang T, Hong L, Wang Y, Xu Y, Ma K, An C, He C, Wei Z, Gao F, Hou J. Adv Mater, 2020, 32: 1908205 CrossRef PubMed Google Scholar

[8] Bin H, Yao J, Yang Y, Angunawela I, Sun C, Gao L, Ye L, Qiu B, Xue L, Zhu C, Yang C, Zhang ZG, Ade H, Li Y. Adv Mater, 2018, 30: 1706361 CrossRef PubMed Google Scholar

[9] Qiu B, Chen Z, Qin S, Yao J, Huang W, Meng L, Zhu H, Yang YM, Zhang ZG, Li Y. Adv Mater, 2020, 32: 1908373 CrossRef PubMed Google Scholar

[10] Nian L, Kan Y, Gao K, Zhang M, Li N, Zhou G, Jo SB, Shi X, Lin F, Rong Q, Liu F, Zhou G, Jen AKY. Joule, 2020, 4: 2223-2236 CrossRef Google Scholar

[11] Liang N, Meng D, Ma Z, Kan B, Meng X, Zheng Z, Jiang W, Li Y, Wan X, Hou J, Ma W, Chen Y, Wang Z. Adv Energy Mater, 2017, 7: 1601664 CrossRef Google Scholar

[12] Chang Y, Chang Y, Zhu X, Zhou X, Yang C, Zhang J, Lu K, Sun X, Wei Z. Adv Energy Mater, 2019, 9: 1900190 CrossRef Google Scholar

[13] Wang X, Wang J, Han J, Huang D, Wang P, Zhou L, Yang C, Bao X, Yang R. Nano Energy, 2021, 81: 105612 CrossRef Google Scholar

[14] Wu Q, Deng D, Zhang J, Zou W, Yang Y, Wang Z, Li H, Zhou R, Lu K, Wei Z. Sci China Chem, 2019, 62: 837-844 CrossRef Google Scholar

[15] Sun R, Wu Y, Guo J, Luo Z, Yang C, Min J. Sci China Chem, 2020, 63: 1246-1255 CrossRef Google Scholar

[16] An C, Zheng Z, Hou J. Chem Commun, 2020, 56: 4750-4760 CrossRef PubMed Google Scholar

[17] Wang MH, Xue ZY, Wang ZW, Ning WH, Zhong Y, Liu YN, Zhang CF, Huettner S, Tao YT. Chin J Polym Sci, 2018, 36: 1129-1138 CrossRef Google Scholar

[18] Zhang S, Hou J. Acta Phys-Chim Sin, 2017, 33: 2327–2338. Google Scholar

[19] Fan B, Zhang D, Li M, Zhong W, Zeng Z, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62: 746-752 CrossRef Google Scholar

[20] An C, Xin J, Shi L, Ma W, Zhang J, Yao H, Li S, Hou J. Sci China Chem, 2019, 62: 370-377 CrossRef Google Scholar

[21] Zhang X, Ding Y, Feng H, Gao H, Ke X, Zhang H, Li C, Wan X, Chen Y. Sci China Chem, 2020, 63: 1799-1806 CrossRef Google Scholar

[22] Wu Y, Zheng Y, Yang H, Sun C, Dong Y, Cui C, Yan H, Li Y. Sci China Chem, 2019, 63: 265-271 CrossRef Google Scholar

[23] Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170-1174 CrossRef PubMed Google Scholar

[24] Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139: 7148-7151 CrossRef PubMed Google Scholar

[25] Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140-1151 CrossRef Google Scholar

[26] Ge J, Xie L, Peng R, Fanady B, Huang J, Song W, Yan T, Zhang W, Ge Z. Angew Chem Int Ed, 2020, 59: 2808-2815 CrossRef PubMed Google Scholar

[27] Yue Q, Wu H, Zhou Z, Zhang M, Liu F, Zhu X. Adv Mater, 2019, 31: 1904283 CrossRef PubMed Google Scholar

[28] Chen H, Hu D, Yang Q, Gao J, Fu J, Yang K, He H, Chen S, Kan Z, Duan T, Yang C, Ouyang J, Xiao Z, Sun K, Lu S. Joule, 2019, 3: 3034-3047 CrossRef Google Scholar

[29] Zhou R, Jiang Z, Yang C, Yu J, Feng J, Adil MA, Deng D, Zou W, Zhang J, Lu K, Ma W, Gao F, Wei Z. Nat Commun, 2019, 10: 5393 CrossRef PubMed ADS Google Scholar

[30] Qin J, An C, Zhang J, Ma K, Yang Y, Zhang T, Li S, Xian K, Cui Y, Tang Y, Ma W, Yao H, Zhang S, Xu B, He C, Hou J. Sci China Mater, 2020, 63: 1142-1150 CrossRef Google Scholar

[31] Tang H, Xu T, Yan C, Gao J, Yin H, Lv J, Singh R, Kumar M, Duan T, Kan Z, Lu S, Li G. Adv Sci, 2019, 6: 1901613 CrossRef PubMed Google Scholar

[32] Cui Y, Yao H, Hong L, Zhang T, Tang Y, Lin B, Xian K, Gao B, An C, Bi P, Ma W, Hou J. Natl Sci Rev, 2020, 7: 1239-1246 CrossRef Google Scholar

[33] Li X, Huang G, Zheng N, Li Y, Kang X, Qiao S, Jiang H, Chen W, Yang R. Sol RRL, 2019, 3: 1900005 CrossRef Google Scholar

[34] Sansom HC, Whitehead GFS, Dyer MS, Zanella M, Manning TD, Pitcher MJ, Whittles TJ, Dhanak VR, Alaria J, Claridge JB, Rosseinsky MJ. Chem Mater, 2017, 29: 1538-1549 CrossRef Google Scholar

[35] Bredas JL. Mater Horiz, 2014, 1: 17-19 CrossRef Google Scholar

[36] Li S, Zhan L, Sun C, Zhu H, Zhou G, Yang W, Shi M, Li CZ, Hou J, Li Y, Chen H. J Am Chem Soc, 2019, 141: 3073-3082 CrossRef PubMed Google Scholar

[37] Sun C, Qin S, Wang R, Chen S, Pan F, Qiu B, Shang Z, Meng L, Zhang C, Xiao M, Yang C, Li Y. J Am Chem Soc, 2020, 142: 1465-1474 CrossRef PubMed Google Scholar

[38] Tang ML, Roberts ME, Locklin JJ, Ling MM, Meng H, Bao Z. Chem Mater, 2006, 18: 6250-6257 CrossRef Google Scholar

[39] Murgatroyd PN. J Phys D-Appl Phys, 1970, 3: 151-156 CrossRef ADS Google Scholar

[40] Azimi H, Senes A, Scharber MC, Hingerl K, Brabec CJ. Adv Energy Mater, 2011, 1: 1162-1168 CrossRef Google Scholar

[41] Hu D, Yang Q, Chen H, Wobben F, Le Corre VM, Singh R, Liu T, Ma R, Tang H, Koster LJA, Duan T, Yan H, Kan Z, Xiao Z, Lu S. Energy Environ Sci, 2020, 13: 2134-2141 CrossRef Google Scholar

[42] Gasparini N, Salvador M, Strohm S, Heumueller T, Levchuk I, Wadsworth A, Bannock JH, de Mello JC, Egelhaaf HJ, Baran D, McCulloch I, Brabec CJ. Adv Energy Mater, 2017, 7: 1700770 CrossRef Google Scholar

[43] Cowan SR, Roy A, Heeger AJ. Phys Rev B, 2010, 82: 245207 CrossRef ADS arXiv Google Scholar

[44] Riedel I, Parisi J, Dyakonov V, Lutsen L, Vanderzande D, Hummelen J . Adv Funct Mater, 2004, 14: 38-44 CrossRef Google Scholar

[45] Zhang Y, Dang XD, Kuik M, Cowan SR, Zalar P, Kim C, Nguyen TQ. Energy Environ Sci, 2013, 6: 1766-1771 CrossRef Google Scholar

[46] Boix PP, Guerrero A, Marchesi LF, Garcia-Belmonte G, Bisquert J. Adv Energy Mater, 2011, 1: 1073-1078 CrossRef Google Scholar

[47] Rand BP, Burk DP, Forrest SR. Phys Rev B, 2007, 75: 115327 CrossRef ADS Google Scholar

[48] Alexander H, Wim B, James G, Eric S, Eliot G, Rick K, Alastair M, Matthew C, Bruce R, Howard P. J Phys-Conf Ser, 2010, 247: 012007 CrossRef ADS Google Scholar

[49] Zhang Y, Liu D, Lau T, Zhan L, Shen D, Fong PWK, Yan C, Zhang S, Lu X, Lee C, Hou J, Chen H, Li G. Adv Funct Mater, 2020, 30: 1910466 CrossRef Google Scholar

  • Figure 1

    (a) The absorption spectra of three small molecules in the chloroform solutions and films; (b) the energy level diagram of photoactive layer materials; (c) DSC curves of three small molecules; (d) chemical structure of BO-4Cl (color online).

  • Scheme 1

    Synthetic routes for three small-molecule donors.

  • Figure 2

    2D GIWAXS patterns of (a) BPF3T-C4, (b) PF3T-C6, and (c) PF3T-C8. (d) The line-cut profiles along with OOP and IP directions of the blend films (color online).

  • Figure 3

    (a) J-V and (b) EQE curves of the optimized small-molecule donor-based SM-OSCs (color online).

  • Figure 4

    (a) The Jph plotted against the Veff for the optimal SM-OSCs; (b) the light intensity versus VOC curves for the optimal SM-OSCs (color online).

  • Figure 5

    2D GIWAXS patterns of (a) BPF3T-C4:BO-4Cl, (b) PF3T-C6:BO-4Cl, and (c) PF3T-C8:BO-4Cl. (d) The line-cut profiles, along with OOP and IP direction of the blend films (color online).

  • Figure 6

    AFM height, phase, and TEM images of BPF3T-C4:BO-4Cl film (a, d, g), BPF3T-C6:BO-4Cl film (b, e, h), and BPF3T-C8:BO-4Cl film (c, f, i) (color online).

  • Table 1   Detailed photovoltaic parameters of the BPF3T-C4, BPF3T-C6, and BPF3T-C8-based SM-OSCs under simulated AM 1.5 G (100 mW cm−2) illuminationa)


    VOC (V)

    JSC (Am cm−2)


    PCE (%)


    0.850±0.005 (0.849)

    23.8±0.83 (23.7)

    0.664±0.026 (0.656)

    13.4±0.23 (13.8)


    0.856±0.002 (0.857)

    24.6±0.71 (24.7)

    0.693±0.021 (0.702)

    14.6±0.33 (15.1)


    0.851±0.004 (0.851)

    23.2±0.92 (24.1)

    0.615±0.019 (0.607)

    12.1±0.27 (12.4)

    Average PCE values were obtained from 10 devices. The parameters based on best device are shown in parentheses.


Contact and support