logo

SCIENCE CHINA Chemistry, Volume 64 , Issue 7 : 1192-1199(2021) https://doi.org/10.1007/s11426-021-1013-0

High-performance polymer solar cells with efficiency over 18% enabled by asymmetric side chain engineering of non-fullerene acceptors

More info
  • ReceivedApr 2, 2021
  • AcceptedApr 20, 2021
  • PublishedMay 20, 2021

Abstract


Funded by

the National Key Research and Development Program of China(2019YFA0705900)

and the Basic and Applied Basic Research Major Program of Guangdong Province(2019B030302007)


Acknowledgment

The work was supported by the National Key Research and Development Program of China (2019YFA0705900) funded by MOST, and the Basic and Applied Basic Research Major Program of Guangdong Province (2019B030302007).


Interest statement

The authors declare no conflict of interest.


Contributions statement

These authors contributed equally to this work.


Supplement

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip HL, Cao Y, Chen Y. Science, 2018, 361: 1094-1098 CrossRef PubMed ADS Google Scholar

[2] Yu ZP, Yan K, Ullah W, Chen H, Li CZ. ACS Appl Polym Mater, 2021, 3: 60-92 CrossRef Google Scholar

[3] Huang F, Bo Z, Geng Y, Wang X, Wang L, Ma Y, Hou J, Hu W, Pei J, Dong H, Wang S, Li Z, Shuai Z, Li Y, Cao Y. Acta Polym Sin, 2019, 50: 988–1046. Google Scholar

[4] Zhang D, Fan B, Ying L, Li N, Brabec CJ, Huang F, Cao Y. SusMat, 2021, 1: 4-23 CrossRef Google Scholar

[5] Zhao R, Liu J, Wang L. Acc Chem Res, 2020, 53: 1557-1567 CrossRef PubMed Google Scholar

[6] Xu X, Feng K, Bi Z, Ma W, Zhang G, Peng Q. Adv Mater, 2019, 31: 1901872 CrossRef PubMed Google Scholar

[7] Jia T, Zhang J, Zhong W, Liang Y, Zhang K, Dong S, Ying L, Liu F, Wang X, Huang F, Cao Y. Nano Energy, 2020, 72: 104718 CrossRef Google Scholar

[8] Po R, Carbonera C, Bernardi A, Camaioni N. Energy Environ Sci, 2011, 4: 285-310 CrossRef Google Scholar

[9] Yang X, Loos J, Veenstra SC, Verhees WJH, Wienk MM, Kroon JM, Michels MAJ, Janssen RAJ. Nano Lett, 2005, 5: 579-583 CrossRef PubMed ADS Google Scholar

[10] Tang H, Liu Z, Tang Y, Du Z, Liang Y, Hu Z, Zhang K, Huang F, Cao Y. Giant, 2021, 6: 100053 CrossRef Google Scholar

[11] Fan B, Zhang D, Li M, Zhong W, Zeng Z, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62: 746-752 CrossRef Google Scholar

[12] Li S, Li CZ, Shi M, Chen H. ACS Energy Lett, 2020, 5: 1554-1567 CrossRef Google Scholar

[13] Cui Y, Yao H, Zhang J, Xian K, Zhang T, Hong L, Wang Y, Xu Y, Ma K, An C, He C, Wei Z, Gao F, Hou J. Adv Mater, 2020, 32: 1908205 CrossRef PubMed Google Scholar

[14] Ma R, Tao Y, Chen Y, Liu T, Luo Z, Guo Y, Xiao Y, Fang J, Zhang G, Li X, Guo X, Yi Y, Zhang M, Lu X, Li Y, Yan H. Sci China Chem, 2021, doi: 10.1007/s11426-11020-19912-11420. Google Scholar

[15] Ma R, Liu T, Luo Z, Gao K, Chen K, Zhang G, Gao W, Xiao Y, Lau TK, Fan Q, Chen Y, Ma LK, Sun H, Cai G, Yang T, Lu X, Wang E, Yang C, Jen AKY, Yan H. ACS Energy Lett, 2020, 5: 2711-2720 CrossRef Google Scholar

[16] Yan C, Barlow S, Wang Z, Yan H, Jen AKY, Marder SR, Zhan X. Nat Rev Mater, 2018, 3: 18003 CrossRef ADS Google Scholar

[17] Jørgensen M, Norrman K, Gevorgyan SA, Tromholt T, Andreasen B, Krebs FC. Adv Mater, 2012, 24: 580-612 CrossRef PubMed Google Scholar

[18] Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140-1151 CrossRef Google Scholar

[19] Luo Z, Ma R, Liu T, Yu J, Xiao Y, Sun R, Xie G, Yuan J, Chen Y, Chen K, Chai G, Sun H, Min J, Zhang J, Zou Y, Yang C, Lu X, Gao F, Yan H. Joule, 2020, 4: 1236-1247 CrossRef Google Scholar

[20] Liu W, Zhang J, Xu S, Zhu X. Sci Bull, 2019, 64: 1144-1147 CrossRef ADS Google Scholar

[21] Wei Q, Liu W, Leclerc M, Yuan J, Chen H, Zou Y. Sci China Chem, 2020, 63: 1352-1366 CrossRef Google Scholar

[22] Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L. Sci Bull, 2020, 65: 272-275 CrossRef ADS Google Scholar

[23] Zhan L, Li S, Xia X, Li Y, Lu X, Zuo L, Shi M, Chen H. Adv Mater, 2021, 33: 2007231 CrossRef PubMed Google Scholar

[24] Lin Y, Nugraha MI, Firdaus Y, Scaccabarozzi AD, Aniés F, Emwas AH, Yengel E, Zheng X, Liu J, Wahyudi W, Yarali E, Faber H, Bakr OM, Tsetseris L, Heeney M, Anthopoulos TD. ACS Energy Lett, 2020, 5: 3663-3671 CrossRef Google Scholar

[25] Zhang M, Zhu L, Zhou G, Hao T, Qiu C, Zhao Z, Hu Q, Larson BW, Zhu H, Ma Z, Tang Z, Feng W, Zhang Y, Russell TP, Liu F. Nat Commun, 2021, 12: 309 CrossRef PubMed Google Scholar

[26] Zhang ZG, Li Y. Sci China Chem, 2015, 58: 192-209 CrossRef Google Scholar

[27] Zhou Y, Kurosawa T, Ma W, Guo Y, Fang L, Vandewal K, Diao Y, Wang C, Yan Q, Reinspach J, Mei J, Appleton AL, Koleilat GI, Gao Y, Mannsfeld SCB, Salleo A, Ade H, Zhao D, Bao Z. Adv Mater, 2014, 26: 3767-3772 CrossRef PubMed Google Scholar

[28] Mo D, Chen H, Zhou J, Tang N, Han L, Zhu Y, Chao P, Lai H, Xie Z, He F. J Mater Chem A, 2020, 8: 8903-8912 CrossRef Google Scholar

[29] Li Y, Zheng N, Yu L, Wen S, Gao C, Sun M, Yang R. Adv Mater, 2019, 31: 1807832 CrossRef PubMed Google Scholar

[30] Luo Z, Sun R, Zhong C, Liu T, Zhang G, Zou Y, Jiao X, Min J, Yang C. Sci China Chem, 2020, 63: 361-369 CrossRef Google Scholar

[31] Jiang K, Wei Q, Lai JYL, Peng Z, Kim HK, Yuan J, Ye L, Ade H, Zou Y, Yan H. Joule, 2019, 3: 3020-3033 CrossRef Google Scholar

[32] Chai G, Chang Y, Zhang J, Xu X, Yu L, Zou X, Li X, Chen Y, Luo S, Liu B, Bai F, Luo Z, Yu H, Liang J, Liu T, Wong KS, Zhou H, Peng Q, Yan H. Energy Environ Sci, 2021, doi: 10.1039/D1030EE03506H. Google Scholar

[33] Luo Z, Liu T, Yan H, Zou Y, Yang C. Adv Funct Mater, 2020, 30: 2004477 CrossRef Google Scholar

[34] Chen Y, Bai F, Peng Z, Zhu L, Zhang J, Zou X, Qin Y, Kim HK, Yuan J, Ma L‐, Zhang J, Yu H, Chow PCY, Huang F, Zou Y, Ade H, Liu F, Yan H. Adv Energy Mater, 2021, 11: 2003141 CrossRef Google Scholar

[35] Armin A, Li W, Sandberg OJ, Xiao Z, Ding L, Nelson J, Neher D, Vandewal K, Shoaee S, Wang T, Ade H, Heumüller T, Brabec C, Meredith P. Adv Energy Mater, 2021, 11: 2003570 CrossRef Google Scholar

[36] Hong L, Yao H, Wu Z, Cui Y, Zhang T, Xu Y, Yu R, Liao Q, Gao B, Xian K, Woo HY, Ge Z, Hou J. Adv Mater, 2019, 31: 1903441 CrossRef PubMed Google Scholar

[37] Zhang M, Guo X, Ma W, Ade H, Hou J. Adv Mater, 2015, 27: 4655-4660 CrossRef PubMed Google Scholar

[38] Wu Z, Sun C, Dong S, Jiang XF, Wu S, Wu H, Yip HL, Huang F, Cao Y. J Am Chem Soc, 2016, 138: 2004-2013 CrossRef PubMed Google Scholar

[39] Al-Ashouri A, Köhnen E, Li B, Magomedov A, Hempel H, Caprioglio P, Márquez JA, Morales Vilches AB, Kasparavicius E, Smith JA, Phung N, Menzel D, Grischek M, Kegelmann L, Skroblin D, Gollwitzer C, Malinauskas T, Jošt M, Matič G, Rech B, Schlatmann R, Topič M, Korte L, Abate A, Stannowski B, Neher D, Stolterfoht M, Unold T, Getautis V, Albrecht S. Science, 2020, 370: 1300-1309 CrossRef PubMed ADS Google Scholar

[40] Lin Y, Firdaus Y, Isikgor FH, Nugraha MI, Yengel E, Harrison GT, Hallani R, El-Labban A, Faber H, Ma C, Zheng X, Subbiah A, Howells CT, Bakr OM, McCulloch I, Wolf SD, Tsetseris L, Anthopoulos TD. ACS Energy Lett, 2020, 5: 2935-2944 CrossRef Google Scholar

[41] Kyaw AKK, Wang DH, Gupta V, Leong WL, Ke L, Bazan GC, Heeger AJ. ACS Nano, 2013, 7: 4569-4577 CrossRef PubMed Google Scholar

[42] Koster LJA, Mihailetchi VD, Ramaker R, Blom PWM. Appl Phys Lett, 2005, 86: 123509 CrossRef ADS Google Scholar

[43] Malliaras GG, Salem JR, Brock PJ, Scott C. Phys Rev B, 1998, 58: R13411 CrossRef ADS Google Scholar

[44] Müller-Buschbaum P. Adv Mater, 2014, 26: 7692-7709 CrossRef PubMed Google Scholar

[45] Schubert M, Collins BA, Mangold H, Howard IA, Schindler W, Vandewal K, Roland S, Behrends J, Kraffert F, Steyrleuthner R, Chen Z, Fostiropoulos K, Bittl R, Salleo A, Facchetti A, Laquai F, Ade HW, Neher D. Adv Funct Mater, 2014, 24: 4068-4081 CrossRef Google Scholar

[46] Kim HG, Kang B, Ko H, Lee J, Shin J, Cho K. Chem Mater, 2015, 27: 829-838 CrossRef Google Scholar

[47] Shi M, Wang T, Wu Y, Sun R, Wang W, Guo J, Wu Q, Yang W, Min J. Adv Energy Mater, 2021, 11: 2002709 CrossRef Google Scholar

[48] Gasparini N, Paleti SHK, Bertrandie J, Cai G, Zhang G, Wadsworth A, Lu X, Yip HL, McCulloch I, Baran D. ACS Energy Lett, 2020, 5: 1371-1379 CrossRef Google Scholar

[49] Zhang Y, Liu D, Lau T, Zhan L, Shen D, Fong PWK, Yan C, Zhang S, Lu X, Lee C, Hou J, Chen H, Li G. Adv Funct Mater, 2020, 30: 1910466 CrossRef Google Scholar

[50] Duan L, Zhang Y, He M, Deng R, Yi H, Wei Q, Zou Y, Uddin A. ACS Appl Mater Interfaces, 2020, 12: 27433-27442 CrossRef PubMed Google Scholar

  • Scheme 1

    Chemical structures of acceptors, donor and interface layer materials (color online).

  • Figure 1

    (a) DSC characteristics of NFSMAs; (b) UV-Vis-NIR absorption spectra of NFSMAs in chloroform solution; (c) normalized UV-Vis-NIR absorption spectra of pristine NFSMAs and PM6 films; (d) energy diagrams of active-layer materials; (e) J-V characteristics and (f) EQE spectra of the optimal NFPSCs (color online).

  • Figure 2

    (a) Jph-Veff relationships of PM6:acceptors-based devices; (b) JSC versus Plight curves of PM6:acceptors devices; (c) VOC versusPlight cures of PSCs based on PM6:acceptors (color online).

  • Figure 3

    Film morphology images. AFM height images (a–c) and TEM images (d–f) of BO-4F, EH-HD-4F and Bu-OD-4F blend films (color online).

  • Figure 4

    2D GIWAXS patterns of (a) PM6:EH-HD-4F, (b) PM6:BO-4F and (c) PM6:Bu-OD-4F; and (d) integrated scattering profiles for the corresponding blend films (color online).

  • Figure 5

    Stability tests of PM6:EH-HD-4F- and PM6:Y6-based NFPSCs with 2PACz and PEDOT:PSS under illumination with light intensity of 100 mW cm−2 (color online).

  • Table 1   Optical, thermal and electrochemical properties of EH-HD-4F, BO-4F and Bu-OD-4F

    Acceptors

    λmax (nm)

    λonset (nm)

    Egopt (eV) a)

    EHOMO (eV) b)

    ELUMO (eV) b)

    Tm (°C)

    ∆Hm (J g−1)

    In solution

    Film

    Film

    EH-HD-4F

    732

    813

    892

    1.39

    −4.04

    −5.69

    269.9

    24.4

    BO-4F

    733

    811

    884

    1.40

    −4.01

    −5.70

    269.1

    23.3

    Bu-OD-4F

    732

    801

    874

    1.42

    −4.01

    −5.68

    287.5

    26.2

    Calculated from the absorption onsets of acceptors; Egopt=1240/λonset; (b) calculated according to EHOMO=−e(Eox−0.43+4.80) eV and ELUMO=−e(Ered−0.43+4.80) eV, respectively.

  • Table 2   Photovoltaic parameters of the optimized solar cells based on EH-HD-4F, BO-4F and Bu-OD-4F under standard AM 1.5G illumination, 100 mW cm−2

    Acceptors

    VOC (V)

    JSC (mA cm−2)

    FF (%)

    PCE (%) a)

    PCEmax (%)

    EH-HD-4F

    0.84

    27.5

    79.3

    18.30±0.07

    18.38

    EH-HD-4F b)

    0.84

    26.7

    76.8

    17.06±0.09

    17.12

    BO-4F

    0.84

    27.0

    76.7

    17.37±0.03

    17.39

    BO-4F b)

    0.84

    25.7

    77.3

    16.45±0.21

    16.69

    Bu-OD-4F

    0.85

    26.2

    76.6

    17.06±0.05

    17.10

    Bu-OD-4F b)

    0.85

    2.56

    73.8

    16.15±0.10

    16.26

    Average of 8 individual devices; (b) PSCs based on PEDOT:PSS.

qqqq

Contact and support