logo

SCIENCE CHINA Chemistry, Volume 64 , Issue 7 : 1131-1156(2021) https://doi.org/10.1007/s11426-021-1011-9

High safety separators for rechargeable lithium batteries

More info
  • ReceivedJan 21, 2021
  • AcceptedApr 14, 2021
  • PublishedApr 25, 2021

Abstract


Funded by

This work was financially supported by the National Key R&D Program of China(2016YFB0100304)

the National Natural Science Foundation of China(21776098)

Guangdong Natural Science Funds for Distinguished Young Scholar(2017A030306022)

the Guangzhou Technology Project(202002030164)


Acknowledgment

This work was financially supported by the National Key R&D Program of China (2016YFB0100304), the National Natural Science Foundation of China (21776098), Guangdong Natural Science Funds for Distinguished Young Scholar (2017A030306022), the Guangzhou Technology Project (202002030164).


Interest statement

The authors declare no conflict of interest.


References

[1] Feng X, Ren D, He X, Ouyang M. Joule, 2020, 4: 743-770 CrossRef Google Scholar

[2] Li Y, Yu L, Hu W, Hu X. J Mater Chem A, 2020, 8: 20294-20317 CrossRef Google Scholar

[3] Liu X, Ren D, Hsu H, Feng X, Xu GL, Zhuang M, Gao H, Lu L, Han X, Chu Z, Li J, He X, Amine K, Ouyang M. Joule, 2018, 2: 2047-2064 CrossRef Google Scholar

[4] Lyu P, Liu X, Qu J, Zhao J, Huo Y, Qu Z, Rao Z. Energy Storage Mater, 2020, 31: 195-220 CrossRef Google Scholar

[5] Deng K, Zeng Q, Wang D, Liu Z, Wang G, Qiu Z, Zhang Y, Xiao M, Meng Y. Energy Storage Mater, 2020, 32: 425-447 CrossRef Google Scholar

[6] Todorov YM, Aoki M, Mimura H, Fujii K, Yoshimoto N, Morita M. J Power Sources, 2016, 332: 322-329 CrossRef ADS Google Scholar

[7] Chen Z, Hsu PC, Lopez J, Li Y, To JWF, Liu N, Wang C, Andrews SC, Liu J, Cui Y, Bao Z. Nat Energy, 2016, 1: 15009 CrossRef ADS Google Scholar

[8] Chen G, Song X, Wang S, Wang Y, Gao T, Ding LX, Wang H. J Membrane Sci, 2018, 548: 247-253 CrossRef Google Scholar

[9] Song X, Wang S, Chen G, Gao T, Bao Y, Ding LX, Wang H. Chem Eng J, 2018, 333: 564-571 CrossRef Google Scholar

[10] Song X, Chen G, Wang S, Huang Y, Jiang Z, Ding LX, Wang H. ACS Appl Mater Interfaces, 2018, 10: 26274-26282 CrossRef PubMed Google Scholar

[11] Chen G, Song X, Wang S, Chen X, Wang H. J Power Sources, 2018, 408: 58-64 CrossRef ADS Google Scholar

[12] Waqas M, Ali S, Feng C, Chen D, Han J, He W. Small, 2019, 15: 1901689 CrossRef PubMed Google Scholar

[13] Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X. Energy Environ Sci, 2014, 7: 3857-3886 CrossRef Google Scholar

[14] Zhang C, Li H, Wang S, Cao Y, Yang H, Ai X, Zhong F. J Energy Chem, 2020, 44: 33-40 CrossRef Google Scholar

[15] Zhao CZ, Chen PY, Zhang R, Chen X, Li BQ, Zhang XQ, Cheng XB, Zhang Q. Sci Adv, 2018, 4: eaat3446 CrossRef PubMed ADS Google Scholar

[16] Li C, Liu S, Shi C, Liang G, Lu Z, Fu R, Wu D. Nat Commun, 2019, 10: 1363 CrossRef PubMed ADS Google Scholar

[17] Dong G, Liu B, Kong L, Wang Y, Tian G, Qi S, Wu D. ACS Sustain Chem Eng, 2019, 7: 17643-17652 CrossRef Google Scholar

[18] Lagadec MF, Zahn R, Wood V. Nat Energy, 2019, 4: 16-25 CrossRef Google Scholar

[19] Liang J, Chen Q, Liao X, Yao P, Zhu B, Lv G, Wang X, Chen X, Zhu J. Angew Chem Int Ed, 2020, 59: 6561-6566 CrossRef PubMed Google Scholar

[20] Chen Y, Liu Z, Lin M, Lin Q, Tong B, Chen D. Sci China Chem, 2019, 62: 479-490 CrossRef Google Scholar

[21] Guan X, Wang A, Liu S, Li G, Liang F, Yang YW, Liu X, Luo J. Small, 2018, 14: 1801423 CrossRef PubMed Google Scholar

[22] Chao CH, Hsieh CT, Ke WJ, Lee LW, Lin YF, Liu HW, Gu S, Fu CC, Juang RS, Mallick BC, Gandomi YA, Su CY. J Power Sources, 2021, 482: 228896 CrossRef ADS Google Scholar

[23] Zhang W, Tu Z, Qian J, Choudhury S, Archer LA, Lu Y. Small, 2018, 14: 1703001 CrossRef PubMed Google Scholar

[24] Jeon H, Yeon D, Lee T, Park J, Ryou MH, Lee YM. J Power Sources, 2016, 315: 161-168 CrossRef ADS Google Scholar

[25] Zhang Y, Wang Z, Xiang H, Shi P, Wang H. J Membrane Sci, 2016, 509: 19-26 CrossRef Google Scholar

[26] Pi JK, Wu GP, Yang HC, Arges CG, Xu ZK. ACS Appl Mater Interfaces, 2017, 9: 21971-21978 CrossRef PubMed Google Scholar

[27] Cho J, Jung YC, Lee YS, Kim DW. J Membrane Sci, 2017, 535: 151-157 CrossRef Google Scholar

[28] Lei QK, Zhang Q, Wu XY, Wei X, Zhang J, Wang KX, Chen JS. Chem Eng J, 2020, 395: 125187 CrossRef Google Scholar

[29] Zhang K, Xiao W, Li X, Liu J, Yan C. J Power Sources, 2020, 468: 228403 CrossRef ADS Google Scholar

[30] Xiang H, Chen J, Li Z, Wang H. J Power Sources, 2011, 196: 8651-8655 CrossRef ADS Google Scholar

[31] Chen J, Wang S, Cai D, Wang H. J Membrane Sci, 2014, 449: 169-175 CrossRef Google Scholar

[32] Yang P, Zhang P, Shi C, Chen L, Dai J, Zhao J. J Membrane Sci, 2015, 474: 148-155 CrossRef Google Scholar

[33] Boateng B, Zhu G, Lv W, Chen D, Feng C, Waqas M, Ali S, Wen K, He W. Phys Status Solidi RRL, 2018, 12: 1800319 CrossRef ADS Google Scholar

[34] Lee Y, Lee H, Lee T, Ryou MH, Lee YM. J Power Sources, 2015, 294: 537-544 CrossRef ADS Google Scholar

[35] Shi C, Dai J, Shen X, Peng L, Li C, Wang X, Zhang P, Zhao J. J Membrane Sci, 2016, 517: 91-99 CrossRef Google Scholar

[36] Dai J, Shi C, Li C, Shen X, Peng L, Wu D, Sun D, Zhang P, Zhao J. Energy Environ Sci, 2016, 9: 3252-3261 CrossRef Google Scholar

[37] Song Q, Li A, Shi L, Qian C, Feric TG, Fu Y, Zhang H, Li Z, Wang P, Li Z, Zhai H, Wang X, Dontigny M, Zaghib K, Park AHA, Myers K, Chuan X, Yang Y. Energy Storage Mater, 2019, 22: 48-56 CrossRef Google Scholar

[38] Yang C, Tong H, Luo C, Yuan S, Chen G, Yang Y. J Power Sources, 2017, 348: 80-86 CrossRef ADS Google Scholar

[39] Zheng H, Wang Z, Shi L, Zhao Y, Yuan S. J Colloid Interface Sci, 2019, 554: 29-38 CrossRef PubMed ADS Google Scholar

[40] Waqas M, Tan C, Lv W, Ali S, Boateng B, Chen W, Wei Z, Feng C, Ahmed J, Goodenough JB, He W. ChemElectroChem, 2018, 5: 2722-2728 CrossRef Google Scholar

[41] Waqas M, Ali S, Lv W, Chen D, Boateng B, He W. Adv Mater Interfaces, 2019, 6: 1801330 CrossRef Google Scholar

[42] Zhang SS, Fan X, Wang C. J Mater Chem A, 2018, 6: 10755-10760 CrossRef Google Scholar

[43] Liao C, Wang W, Han L, Mu X, Wu N, Wang J, Gui Z, Hu Y, Kan Y, Song L. Appl Mater Today, 2020, 21: 100793 CrossRef Google Scholar

[44] Shi C, Zhang P, Chen L, Yang P, Zhao J. J Power Sources, 2014, 270: 547-553 CrossRef ADS Google Scholar

[45] Zhang P, Chen L, Shi C, Yang P, Zhao J. J Power Sources, 2015, 284: 10-15 CrossRef ADS Google Scholar

[46] Yang Y, Wang W, Zhang J. Mater Today Energy, 2020, 16: 100420 CrossRef Google Scholar

[47] Wang X, Peng L, Hua H, Liu Y, Zhang P, Zhao J. ChemElectroChem, 2020, 7: 1187-1192 CrossRef Google Scholar

[48] Qiu Z, Yuan S, Wang Z, Shi L, Jo JH, Myung ST, Zhu J. J Power Sources, 2020, 472: 228445 CrossRef ADS Google Scholar

[49] Zhu X, Jiang X, Ai X, Yang H, Cao Y. J Membrane Sci, 2016, 504: 97-103 CrossRef Google Scholar

[50] Jiang X, Zhu X, Ai X, Yang H, Cao Y. ACS Appl Mater Interfaces, 2017, 9: 25970-25975 CrossRef PubMed Google Scholar

[51] Han M, Kim DW, Kim YC. ACS Appl Mater Interfaces, 2016, 8: 26073-26081 CrossRef PubMed Google Scholar

[52] Chi M, Shi L, Wang Z, Zhu J, Mao X, Zhao Y, Zhang M, Sun L, Yuan S. Nano Energy, 2016, 28: 1-11 CrossRef Google Scholar

[53] Pan R, Sun R, Wang Z, Lindh J, Edström K, Strømme M, Nyholm L. Nano Energy, 2019, 55: 316-326 CrossRef Google Scholar

[54] Moon J, Jeong JY, Kim JI, Kim S, Park JH. J Power Sources, 2019, 416: 89-94 CrossRef ADS Google Scholar

[55] Pan R, Xu X, Sun R, Wang Z, Lindh J, Edström K, Strømme M, Nyholm L. Small, 2018, 14: 1704371 CrossRef PubMed Google Scholar

[56] Yang SY, Rubner MF. J Am Chem Soc, 2002, 124: 2100-2101 CrossRef PubMed Google Scholar

[57] Kim BS, Park SW, Hammond PT. ACS Nano, 2008, 2: 386-392 CrossRef PubMed Google Scholar

[58] Jin R, Fu L, Zhou H, Wang Z, Qiu Z, Shi L, Zhu J, Yuan S. ACS Sustain Chem Eng, 2018, 6: 2961-2968 CrossRef Google Scholar

[59] Na W, Koh KH, Lee AS, Cho S, Ok B, Hwang SW, Lee JH, Koo CM. J Membrane Sci, 2019, 573: 621-627 CrossRef Google Scholar

[60] Zhu C, Nagaishi T, Shi J, Lee H, Wong PY, Sui J, Hyodo K, Kim IS. ACS Appl Mater Interfaces, 2017, 9: 26400-26406 CrossRef PubMed Google Scholar

[61] Zhang J, Xiang Y, Jamil MI, Lu J, Zhang Q, Zhan X, Chen F. J Membrane Sci, 2018, 564: 753-761 CrossRef Google Scholar

[62] Yanilmaz M, Lu Y, Zhu J, Zhang X. J Power Sources, 2016, 313: 205-212 CrossRef ADS Google Scholar

[63] Hu S, Lin S, Tu Y, Hu J, Wu Y, Liu G, Li F, Yu F, Jiang T. J Mater Chem A, 2016, 4: 3513-3526 CrossRef Google Scholar

[64] He L, Qiu T, Xie C, Tuo X. J Appl Polym Sci, 2018, 135: 46697 CrossRef Google Scholar

[65] Liu X, Song K, Lu C, Huang Y, Duan X, Li S, Ding Y. J Membrane Sci, 2018, 555: 1-6 CrossRef Google Scholar

[66] Asghar MR, Zhang Y, Wu A, Yan X, Shen S, Ke C, Zhang J. J Power Sources, 2018, 379: 197-205 CrossRef ADS Google Scholar

[67] Huang F, Xu Y, Peng B, Su Y, Jiang F, Hsieh YL, Wei Q. ACS Sustain Chem Eng, 2015, 3: 932-940 CrossRef Google Scholar

[68] Zhang B, Wang Q, Zhang J, Ding G, Xu G, Liu Z, Cui G. Nano Energy, 2014, 10: 277-287 CrossRef Google Scholar

[69] Zhao H, Deng N, Wang G, Ren H, Kang W, Cheng B. Chem Eng J, 2021, 404: 126542 CrossRef Google Scholar

[70] Hao X, Zhu J, Jiang X, Wu H, Qiao J, Sun W, Wang Z, Sun K. Nano Lett, 2016, 16: 2981-2987 CrossRef PubMed ADS Google Scholar

[71] Chen J, Wang S, Ding L, Jiang Y, Wang H. J Membrane Sci, 2014, 461: 22-27 CrossRef Google Scholar

[72] Li Y, Li Q, Tan Z. J Power Sources, 2019, 443: 227262 CrossRef ADS Google Scholar

[73] Lin CE, Zhang H, Song YZ, Zhang Y, Yuan JJ, Zhu BK. J Mater Chem A, 2018, 6: 991-998 CrossRef Google Scholar

[74] Sun G, Kong L, Liu B, Niu H, Zhang M, Tian G, Qi S, Wu D. J Membrane Sci, 2019, 582: 132-139 CrossRef Google Scholar

[75] Li H, Zhang B, Lin B, Yang Y, Zhao Y, Wang L. J Electrochem Soc, 2018, 165: A939-A946 CrossRef Google Scholar

[76] Hao J, Lei G, Li Z, Wu L, Xiao Q, Wang L. J Membrane Sci, 2013, 428: 11-16 CrossRef Google Scholar

[77] Li D, Shi D, Feng K, Li X, Zhang H. J Membrane Sci, 2017, 530: 125-131 CrossRef Google Scholar

[78] Kong L, Yan Y, Qiu Z, Zhou Z, Hu J. J Membrane Sci, 2018, 549: 321-331 CrossRef Google Scholar

[79] Kong L, Liu B, Ding J, Yan X, Tian G, Qi S, Wu D. J Membrane Sci, 2018, 549: 244-250 CrossRef Google Scholar

[80] Jung JW, Lee CL, Yu S, Kim ID. J Mater Chem A, 2016, 4: 703-750 CrossRef Google Scholar

[81] Wang Y, Wang S, Fang J, Ding LX, Wang H. J Membrane Sci, 2017, 537: 248-254 CrossRef Google Scholar

[82] Zhao H, Deng N, Yan J, Kang W, Ju J, Wang L, Li Z, Cheng B. Chem Eng J, 2019, 356: 11-21 CrossRef Google Scholar

[83] Shi C, Dai J, Huang S, Li C, Shen X, Zhang P, Wu D, Sun D, Zhao J. J Membrane Sci, 2016, 518: 168-177 CrossRef Google Scholar

[84] Yang S, Ma W, Wang A, Gu J, Yin Y. RSC Adv, 2018, 8: 23390-23396 CrossRef ADS Google Scholar

[85] Wang L, Deng N, Ju J, Wang G, Cheng B, Kang W. Electrochim Acta, 2019, 300: 263-273 CrossRef Google Scholar

[86] Du QC, Yang MT, Yang JK, Zhang P, Qi JQ, Bai L, Li Z, Chen JY, Liu RQ, Feng XM, Huang ZD, Masese T, Ma YW, Huang W. ACS Appl Mater Interfaces, 2019, 11: 34895-34903 CrossRef PubMed Google Scholar

[87] Sheng J, Chen T, Wang R, Zhang Z, Hua F, Yang R. J Membrane Sci, 2020, 595: 117550 CrossRef Google Scholar

[88] Lu W, Yuan Z, Zhao Y, Zhang H, Zhang H, Li X. Chem Soc Rev, 2017, 46: 2199-2236 CrossRef PubMed Google Scholar

[89] He M, Zhang X, Jiang K, Wang J, Wang Y. ACS Appl Mater Interfaces, 2015, 7: 738-742 CrossRef PubMed Google Scholar

[90] Zhang T, Chen J, Tian T, Shen B, Peng Y, Song Y, Jiang B, Lu L, Yao H, Yu S. Adv Funct Mater, 2019, 29: 1902023 CrossRef Google Scholar

[91] Liang Y, Cheng S, Zhao J, Zhang C, Sun S, Zhou N, Qiu Y, Zhang X. J Power Sources, 2013, 240: 204-211 CrossRef Google Scholar

[92] Carol P, Ramakrishnan P, John B, Cheruvally G. J Power Sources, 2011, 196: 10156-10162 CrossRef ADS Google Scholar

[93] Chen W, Liu Y, Ma Y, Yang W. J Power Sources, 2015, 273: 1127-1135 CrossRef ADS Google Scholar

[94] Zhai Y, Xiao K, Yu J, Yang J, Ding B. J Mater Chem A, 2015, 3: 10551-10558 CrossRef Google Scholar

[95] Jiang Y, Ding Y, Zhang P, Li F, Yang Z. J Membrane Sci, 2018, 565: 33-41 CrossRef Google Scholar

[96] Zhang C, Shen L, Shen J, Liu F, Chen G, Tao R, Ma S, Peng Y, Lu Y. Adv Mater, 2019, 31: 1808338 CrossRef PubMed Google Scholar

[97] de Moraes ACM, Hyun WJ, Luu NS, Lim JM, Park KY, Hersam MC. ACS Appl Mater Interfaces, 2020, 12: 8107-8114 CrossRef PubMed Google Scholar

[98] Banerjee A, Ziv B, Shilina Y, Luski S, Aurbach D, Halalay IC. ACS Energy Lett, 2017, 2: 2388-2393 CrossRef Google Scholar

[99] Wang M, Chen X, Wang H, Wu H, Jin X, Huang C. J Mater Chem A, 2017, 5: 311-318 CrossRef Google Scholar

[100] Zhang J, Zhu C, Xu J, Wu J, Yin X, Chen S, Zhu Z, Wang L, Li ZC. J Membrane Sci, 2020, 597: 117622 CrossRef Google Scholar

[101] Li Q, Tan S, Li L, Lu Y, He Y. Sci Adv, 2017, 3: e1701246 CrossRef PubMed ADS Google Scholar

[102] Xu K. Chem Rev, 2004, 104: 4303-4418 CrossRef PubMed Google Scholar

[103] Wang C, Wang A, Ren L, Guan X, Wang D, Dong A, Zhang C, Li G, Luo J. Adv Funct Mater, 2019, 29: 1905940 CrossRef Google Scholar

[104] Xie H, Hao Q, Jin H, Xie S, Sun Z, Ye Y, Zhang C, Wang D, Ji H, Wan LJ. Sci China Chem, 2020, 63: 1306-1314 CrossRef Google Scholar

[105] Zhao J, Chen D, Boateng B, Zeng G, Han Y, Zhen C, Goodenough JB, He W. J Power Sources, 2020, 451: 227773 CrossRef ADS Google Scholar

[106] Rao Z, Yang Z, Gong W, Su S, Fu Q, Huang Y. J Mater Chem A, 2020, 8: 3859-3864 CrossRef Google Scholar

[107] Yang J, Wang CY, Wang CC, Chen KH, Mou CY, Wu HL. J Mater Chem A, 2020, 8: 5095-5104 CrossRef Google Scholar

[108] Zhang SS. J Power Sources, 2007, 164: 351-364 CrossRef ADS Google Scholar

[109] Ryou MH, Lee DJ, Lee JN, Lee YM, Park JK, Choi JW. Adv Energy Mater, 2012, 2: 645-650 CrossRef Google Scholar

[110] Wang Y, Shi L, Zhou H, Wang Z, Li R, Zhu J, Qiu Z, Zhao Y, Zhang M, Yuan S. Electrochim Acta, 2018, 259: 386-394 CrossRef Google Scholar

[111] Chen W, Shi L, Wang Z, Zhu J, Yang H, Mao X, Chi M, Sun L, Yuan S. Carbohydrate Polyms, 2016, 147: 517-524 CrossRef PubMed Google Scholar

[112] Huo H, Li X, Chen Y, Liang J, Deng S, Gao X, Doyle-Davis K, Li R, Guo X, Shen Y, Nan CW, Sun X. Energy Storage Mater, 2020, 29: 361-366 CrossRef Google Scholar

[113] Xu Y, Zhou Y, Li T, Jiang S, Qian X, Yue Q, Kang Y. Energy Storage Mater, 2020, 25: 334-341 CrossRef Google Scholar

[114] Boriboon D, Vongsetskul T, Limthongkul P, Kobsiriphat W, Tammawat P. Carbohydrate Polyms, 2018, 189: 145-151 CrossRef PubMed Google Scholar

[115] Liu W, Mi Y, Weng Z, Zhong Y, Wu Z, Wang H. Chem Sci, 2017, 8: 4285-4291 CrossRef PubMed Google Scholar

[116] Wang Z, Huang W, Hua J, Wang Y, Yi H, Zhao W, Zhao Q, Jia H, Fei B, Pan F. Small Methods, 2020, 4: 2000082 CrossRef Google Scholar

[117] Shen L, Wu HB, Liu F, Zhang C, Ma S, Le Z, Lu Y. Nanoscale Horiz, 2019, 4: 705-711 CrossRef ADS Google Scholar

[118] Chen C, Zhang W, Zhu H, Li BG, Lu Y, Zhu S. Nano Res, 2020, 14: 1465-1470 CrossRef ADS Google Scholar

[119] Panda DK, Maity K, Palukoshka A, Ibrahim F, Saha S. ACS Sustain Chem Eng, 2019, 7: 4619-4624 CrossRef Google Scholar

[120] Zhu Y, Xie J, Pei A, Liu B, Wu Y, Lin D, Li J, Wang H, Chen H, Xu J, Yang A, Wu CL, Wang H, Chen W, Cui Y. Nat Commun, 2019, 10: 2067 CrossRef PubMed ADS Google Scholar

[121] Luo W, Zhou L, Fu K, Yang Z, Wan J, Manno M, Yao Y, Zhu H, Yang B, Hu L. Nano Lett, 2015, 15: 6149-6154 CrossRef PubMed ADS Google Scholar

[122] Li X, Liu Y, Pan Y, Wang M, Chen J, Xu H, Huang Y, Lau WM, Shan A, Zheng J, Mitlin D. J Mater Chem A, 2019, 7: 21349-21361 CrossRef Google Scholar

[123] Hu Z, Liu F, Gao J, Zhou W, Huo H, Zhou J, Li L. Adv Funct Mater, 2020, 30: 1907020 CrossRef Google Scholar

[124] Boateng B, Han Y, Zhen C, Zeng G, Chen N, Chen D, Feng C, Han J, Xiong J, Duan X, He W. Nano Lett, 2020, 20: 2594-2601 CrossRef PubMed ADS Google Scholar

[125] Yan J, Liu F, Hu Z, Gao J, Zhou W, Huo H, Zhou J, Li L. Nano Lett, 2020, 20: 3798-3807 CrossRef PubMed ADS Google Scholar

[126] Zhou D, Liu R, He YB, Li F, Liu M, Li B, Yang QH, Cai Q, Kang F. Adv Energy Mater, 2016, 6: 1502214 CrossRef Google Scholar

[127] Fu S, Wang L, Zhao T, Li L, Wu F, Chen R. ChemElectroChem, 2020, 7: 2159-2164 CrossRef Google Scholar

[128] Ye M, Xiao Y, Cheng Z, Cui L, Jiang L, Qu L. Nano Energy, 2018, 49: 403-410 CrossRef Google Scholar

[129] Liu K, Zhuo D, Lee HW, Liu W, Lin D, Lu Y, Cui Y. Adv Mater, 2017, 29: 1603987 CrossRef PubMed Google Scholar

[130] Chen X, Zhang R, Zhao R, Qi X, Li K, Sun Q, Ma M, Qie L, Huang Y. Energy Storage Mater, 2020, 31: 181-186 CrossRef Google Scholar

[131] Tung SO, Ho S, Yang M, Zhang R, Kotov NA. Nat Commun, 2015, 6: 6152 CrossRef PubMed ADS Google Scholar

[132] Liu J, Mo Y, Wang S, Ren S, Han D, Xiao M, Sun L, Meng Y. ACS Appl Energy Mater, 2019, 2: 3886-3895 CrossRef Google Scholar

[133] Blin P, Boury B, Taguet A, Touja J, Monconduit L, Patra S. Carbohydrate Polyms, 2020, 247: 116697 CrossRef PubMed Google Scholar

[134] Na W, Lee AS, Lee JH, Hwang SS, Kim E, Hong SM, Koo CM. ACS Appl Mater Interfaces, 2016, 8: 12852-12858 CrossRef PubMed Google Scholar

[135] Wang W, Liao C, Liew KM, Chen Z, Song L, Kan Y, Hu Y. J Mater Chem A, 2019, 7: 6859-6868 CrossRef Google Scholar

[136] Ansari Y, Guo B, Cho JH, Park K, Song J, Ellison CJ, Goodenough JB. J Electrochem Soc, 2014, 161: A1655-A1661 CrossRef Google Scholar

[137] Tu Z, Kambe Y, Lu Y, Archer LA. Adv Energy Mater, 2014, 4: 1300654 CrossRef Google Scholar

[138] Liu L, Xu T, Gui X, Gao S, Sun L, Lin Q, Song X, Wang Z, Xu K. Compos Part B-Eng, 2021, 215: 108849 CrossRef Google Scholar

[139] Dong G, Dong N, Liu B, Tian G, Qi S, Wu D. J Membrane Sci, 2020, 601: 117884 CrossRef Google Scholar

[140] Kong L, Wang Y, Yu H, Liu BX, Qi S, Wu D, Zhong WH, Tian G, Wang J. ACS Appl Mater Interfaces, 2019, 11: 2978-2988 CrossRef PubMed Google Scholar

[141] Sun G, Dong G, Kong L, Yan X, Tian G, Qi S, Wu D. Nanoscale, 2018, 10: 22439-22447 CrossRef PubMed Google Scholar

[142] Patel A, Wilcox K, Li Z, George I, Juneja R, Lollar C, Lazar S, Grunlan J, Tenhaeff WE, Lutkenhaus JL. ACS Appl Mater Interfaces, 2020, 12: 25756-25766 CrossRef PubMed Google Scholar

[143] Liu J, Yang K, Mo Y, Wang S, Han D, Xiao M, Meng Y. J Power Sources, 2018, 400: 502-510 CrossRef ADS Google Scholar

[144] Mackanic DG, Kao M, Bao Z. Adv Energy Mater, 2020, 10: 2001424 CrossRef Google Scholar

[145] Li H, Wu D, Wu J, Dong LY, Zhu YJ, Hu X. Adv Mater, 2017, 29: 1703548 CrossRef PubMed Google Scholar

[146] Shin M, Song WJ, Son HB, Yoo S, Kim S, Song G, Choi NS, Park S. Adv Energy Mater, 2018, 8: 1801025 CrossRef Google Scholar

[147] Liu W, Chen J, Chen Z, Liu K, Zhou G, Sun Y, Song MS, Bao Z, Cui Y. Adv Energy Mater, 2017, 7: 1701076 CrossRef Google Scholar

[148] Jansen AN, Kahaian AJ, Kepler KD, Nelson PA, Amine K, Dees DW, Vissers DR, Thackeray MM. J Power Sources, 1999, 81-82: 902-905 CrossRef Google Scholar

[149] Walton JJ, Hiasa T, Kumita H, Takeshi K, Sandford G. ACS Appl Mater Interfaces, 2020, 12: 15893-15902 CrossRef PubMed Google Scholar

[150] Xie Y, Zou H, Xiang H, Xia R, Liang D, Shi P, Dai S, Wang H. J Membrane Sci, 2016, 503: 25-30 CrossRef Google Scholar

[151] Xie Y, Xiang H, Shi P, Guo J, Wang H. J Membrane Sci, 2017, 524: 315-320 CrossRef Google Scholar

[152] Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A. J Am Chem Soc, 2014, 136: 5039-5046 CrossRef PubMed Google Scholar

[153] Wang J, Yamada Y, Sodeyama K, Chiang CH, Tateyama Y, Yamada A. Nat Commun, 2016, 7: 12032 CrossRef PubMed ADS Google Scholar

[154] Chen Y, Qiu L, Ma X, Dong L, Jin Z, Xia G, Du P, Xiong J. Carbohydrate Polyms, 2020, 234: 115907 CrossRef PubMed Google Scholar

[155] Yim T, Park MS, Woo SG, Kwon HK, Yoo JK, Jung YS, Kim KJ, Yu JS, Kim YJ. Nano Lett, 2015, 15: 5059-5067 CrossRef PubMed ADS Google Scholar

[156] Zhu C, Zhang J, Xu J, Yin X, Wu J, Chen S, Zhu Z, Wang L, Wang H. J Membrane Sci, 2019, 588: 117169 CrossRef Google Scholar

[157] Liu K, Liu W, Qiu Y, Kong B, Sun Y, Chen Z, Zhuo D, Lin D, Cui Y. Sci Adv, 2017, 3: e1601978 CrossRef PubMed ADS Google Scholar

[158] Peng L, Kong X, Li H, Wang X, Shi C, Hu T, Liu Y, Zhang P, Zhao J. Adv Funct Mater, 2021, 31: 2008537 CrossRef Google Scholar

[159] Jing P, Liu M, Wang P, Yang J, Tang M, He C, Pu Y, Liu M. Chem Eng J, 2020, 388: 124259 CrossRef Google Scholar

[160] Venugopal G, Moore J, Howard J, Pendalwar S. J Power Sources, 1999, 77: 34-41 CrossRef Google Scholar

[161] Li Y, Pu H, Wei Y. Electrochim Acta, 2018, 264: 140-149 CrossRef Google Scholar

[162] Liu J, Liu Y, Yang W, Ren Q, Li F, Huang Z. J Power Sources, 2018, 396: 265-275 CrossRef ADS Google Scholar

[163] Pitchan MK, Bhowmik S, Balachandran M, Abraham M. Mater Des, 2017, 127: 193-203 CrossRef Google Scholar

[164] Li D, Shi D, Yuan Z, Feng K, Zhang H, Li X. J Membrane Sci, 2017, 542: 1-7 CrossRef Google Scholar

[165] Sun G, Liu B, Niu H, Hao F, Chen N, Zhang M, Tian G, Qi S, Wu D. J Membrane Sci, 2020, 595: 117509 CrossRef Google Scholar

[166] Li Z, Xiong Y, Sun S, Zhang L, Li S, Liu X, Xu Z, Xu S. J Membrane Sci, 2018, 565: 50-60 CrossRef Google Scholar

[167] Shi C, Zhang P, Huang S, He X, Yang P, Wu D, Sun D, Zhao J. J Power Sources, 2015, 298: 158-165 CrossRef ADS Google Scholar

[168] Baginska M, Blaiszik BJ, Merriman RJ, Sottos NR, Moore JS, White SR. Adv Energy Mater, 2012, 2: 583-590 CrossRef Google Scholar

[169] Jiang X, Xiao L, Ai X, Yang H, Cao Y. J Mater Chem A, 2017, 5: 23238-23242 CrossRef Google Scholar

[170] Rodriguez JR, Kim PJ, Kim K, Qi Z, Wang H, Pol VG. J Colloid Interface Sci, 2021, 583: 362-370 CrossRef PubMed ADS Google Scholar

[171] Shim J, Kim HJ, Kim BG, Kim YS, Kim DG, Lee JC. Energy Environ Sci, 2017, 10: 1911-1916 CrossRef Google Scholar

[172] Liu Y, Qiao Y, Zhang Y, Yang Z, Gao T, Kirsch D, Liu B, Song J, Yang B, Hu L. Energy Storage Mater, 2018, 12: 197-203 CrossRef Google Scholar

[173] Rahman MM, Mateti S, Cai Q, Sultana I, Fan Y, Wang X, Hou C, Chen Y. Energy Storage Mater, 2019, 19: 352-359 CrossRef Google Scholar

[174] Banerjee A, Shilina Y, Ziv B, Ziegelbauer JM, Luski S, Aurbach D, Halalay IC. J Electrochem Soc, 2017, 164: A6315-A6323 CrossRef Google Scholar

[175] Banerjee A, Ziv B, Shilina Y, Ziegelbauer JM, Liu H, Harris KJ, Botton G, Goward GR, Luski S, Aurbach D, Halalay IC. J Electrochem Soc, 2019, 166: A5369-A5377 CrossRef ADS Google Scholar

[176] Xu J, Xiao X, Zeng S, Cai M, Verbrugge MW. ACS Appl Energy Mater, 2018, 1: 7237-7243 CrossRef Google Scholar

[177] Banerjee A, Ziv B, Shilina Y, Luski S, Aurbach D, Halalay IC. J Electrochem Soc, 2016, 163: A1083-A1094 CrossRef Google Scholar

[178] Banerjee A, Ziv B, Luski S, Aurbach D, Halalay IC. J Power Sources, 2017, 341: 457-465 CrossRef ADS Google Scholar

[179] Liu H, Banerjee A, Ziv B, Harris KJ, Pieczonka NPW, Luski S, Botton GA, Goward GR, Aurbach D, Halalay IC. ACS Appl Energy Mater, 2018, 1: 1878-1882 CrossRef Google Scholar

[180] Jiang Z, Xie H, Wang S, Song X, Yao X, Wang H. Adv Energy Mater, 2018, 8: 1801433 CrossRef Google Scholar

[181] Kaup K, Bazak JD, Vajargah SH, Wu X, Kulisch J, Goward GR, Nazar LF. Adv Energy Mater, 2020, 10: 1902783 CrossRef Google Scholar

[182] Chen X, He W, Ding LX, Wang S, Wang H. Energy Environ Sci, 2019, 12: 938-944 CrossRef Google Scholar

[183] Liu C, Wang J, Kou W, Yang Z, Zhai P, Liu Y, Wu W, Wang J. Chem Eng J, 2021, 404: 126517 CrossRef Google Scholar

[184] Han Q, Wang S, Jiang Z, Hu X, Wang H. ACS Appl Mater Interfaces, 2020, 12: 20514-20521 CrossRef PubMed Google Scholar

[185] Jiang Z, Wang S, Chen X, Yang W, Yao X, Hu X, Han Q, Wang H. Adv Mater, 2020, 32: 1906221 CrossRef PubMed Google Scholar

[186] Wu W, Duan J, Wen J, Chen Y, Liu X, Huang L, Wang Z, Deng S, Huang Y, Luo W. Sci China Chem, 2020, 63: 1483-1489 CrossRef Google Scholar

[187] Zhao CZ, Duan H, Huang JQ, Zhang J, Zhang Q, Guo YG, Wan LJ. Sci China Chem, 2019, 62: 1286-1299 CrossRef Google Scholar

  • Figure 1

    (a) Publications growth of “separator” and “lithium” based on Web of Science database (excluding patents); (b) Shipments growth of separators for LIBs in China and global markets (color online).

  • Figure 2

    Schematic illustration of the preparation of the PE/Al2O3/PDA separator via atomic layer deposition and PDA treatment. (b) Schematic illustration for the preparation of BS–Al2O3@PE separator. (c) Schematic depiction of the fabrication of the SiO2-grafted PE separator. (a) Reprinted with permission from Ref. [54], Copyright 2019, Elsevier. (b) Reprinted with permission from Ref. [48], Copyright 2020, Elsevier. (c) Reprinted with permission from Ref. [59], Copyright 2019, Elsevier (color online).

  • Figure 3

    (a) Surface SEM images of PI–SiO2 (the inset is corresponding high-magnification image); (b) TEM image of PI–SiO2 nanofibers. (c) Thermal shrinkage after exposure at 250 °C for 1 h. (d) Electrochemical behaviors of LiMn2O4/Li cells: rate capabilities with PP, PI and PI–SiO2 separators (0.2–10 C). (e) Schematic illustration of phase inversion method and overall procedure of the material preparation. (f) Schematic highlighting the distinct nature of Li deposition within the lithium-metal batteries using PP and SiO2 nanowire (SN) membranes as separators. (g) Schematic illustration of the preparation of the cellulose nanofibril membrane. (a–d) Reprinted with permission from Ref. [81], Copyright 2017, Elsevier. (e) Reprinted with permission from Ref. [37], Copyright 2019, Elsevier. (f) Reprinted with permission from Ref. [86], Copyright 2019, American Chemical Society. (g) Reprinted with permission from Ref. [87], Copyright 2020, Elsevier (color online).

  • Figure 4

    (a) The effect of uniform pore distribution on the morphology of the Li deposit. (b) The effect of the wettability of the separator on the uniform Li-ion flux. (c) Schematic illustrations of the Li deposition behaviours through PP separators and anion-immobilized PP@PLLZ separators. (a) Reprinted with permission from Ref. [55], Copyright 2018, John Wiley & Sons, Inc. (b) Reprinted with permission from Ref. [109], Copyright 2012, John Wiley & Sons, Inc. (c) Reprinted with permission from Ref. [112], Copyright 2020, Elsevier (color online).

  • Figure 5

    (a) Cycling properties of Li/Li cells separated by SrF2-modified PP, tested at a current density of 0.25 mA cm−2. (b) Schematic illustration of the PZT layer transferring to Li metal. (c) Cycling behaviours of Li/Li symmetric cells at 2 mA cm−2. (d) Cycling behaviours of Li/Li symmetric cells separated by PP, PVDF–HFP, and a garlic separator. (a) Reprinted with permission from Ref. [122], Copyright 2019, the Royal Society of Chemistry. (b, c) Reprinted with permission from Ref. [123], Copyright 2020, John Wiley & Sons, Inc. (d) Reprinted with permission from Ref. [124], Copyright 2020, American Chemical Society (color online).

  • Figure 6

    (a) Schematic depiction of the mechanical suppression preventing lithium dendrite formation. (b) Voltage profiles of the symmetric cells Li/Li with MAGly or Celgard as a separator a current density of 1 mA cm−2. (c) Schematic illustration showing the growth process of dendritic Li on the surface of the copper substrate with the 3D HAPs/PVA separator. (a) Reprinted with permission from Ref. [134] Copyright 2016, American Chemical Society. (b) Reprinted with permission from Ref. [133], Copyright 2020, Elsevier. (c) Reprinted with permission from Ref. [135], Copyright 2019, The Royal Society of Chemistry (color online).

  • Figure 7

    (a) Tensile stress-strain curves of the pristine PI, PI/PBI-1%, PI/PBI-2%, and PI/PBI-3% membranes. (b) The schematic illustration of the preparation of the functionalized PI@F-PMIA separator and the resulting battery assembling process. (c) Schematic of the structure for the in-situ SiO2@(PI/SiO2) hybrid separator. (d) SEM images of thermally cross-linked FPI nanofibers membranes. (d) Stress-strain curves of pristine and thermally cross-linked FPI nanofiber membranes. (f) Mechanism of the formation of the porous-layer-coated PI nanofiber membranes through in-situ self-bonding and micro-crosslinking technique (a) Reprinted with permission from Ref. [74], Copyright 2019 Elsevier. (b) Reprinted with permission from Ref. [69], Copyright 2021, Elsevier. (c) Reprinted with permission from Ref. [17], Copyright 2019, American Chemical Society. (d, e) Reprinted with permission from Ref. [78], Copyright 2018, Elsevier. (f) Reprinted with permission from Ref. [141], Copyright 2018, The Royal Society of Chemistry (color online).

  • Figure 8

    (a) Young’s modulus and maximum strength for different separators when they are dry (solid bars, no electrolyte) and wet (dashed bars, in electrolytes). (b) Stress-strain curves of POM-CNF blend separators. (c) Schematic diagram of multi-void chitin plasma membrane with pore forming agent added and dense cyanoethyl chitin nanofiber (CCN) membrane. (d) Stress−strain curves of the CCN separators. (a) Reprinted with permission from Ref. [142], Copyright 2020, American Chemical Society. (b) Reprinted with permission from Ref. [143], Copyright 2018, Elsevier. (c, d) Reprinted with permission from Ref. [90], Copyright 2019, John Wiley & Sons, Inc. (color online).

  • Figure 9

    Schematic diagram of HAP/CF separator structure and preparation process. (b) High flexibility of the HAP/CF separator under different bending conditions. (c) Fabrication process of the SBN and digital photographs of the SBN separator membrane under uniaxial stretching and biaxial stretching. (a, b) Reprinted with permission from Ref. [145], Copyright 2017, John Wiley & Sons, Inc. (c) Reprinted with permission from Ref. [146], Copyright 2018, John Wiley & Sons, Inc. (color online).

  • Figure 10

    (a) Schematic of the “smart” electrospinning separator with thermal-triggered flame-retardant properties for LIBs. (b) Schematic of the APP-CCS@PFR. (c) Structure of high-safety LIBs assembled with APP-CCS@PFR; and (d) safety mechanism of APP-CCS@PFR for LIBs. (a) Reprinted with permission from Ref. [157], Copyright 2017, American Association for the Advancement of Science. (b–d) Reprinted with permission from Ref. [158], Copyright 2020, John Wiley & Sons, Inc. (color online).

  • Figure 11

    (a) Schematic of the fabrication strategy for the in-situ SiO2@(PI/SiO2) hybrid separator by combining electrospinning and inverse in-situ hydrolysis. (b) Illustration of preparation of the cross section of in-situ SiO2@(PI/SiO2) hybrid nanofibers for SEM imaging. (c) Schematic of the electrospinning device and low/high magnification SEM images. (d) Fire-resistant tests of the ZrO2. (a, b) Reprinted with permission from Ref. [140], Copyright 2019, American Chemical Society. (c, d) Reprinted with permission from Ref. [159], Copyright 2020, Elsevier (color online).

  • Figure 12

    (a) The cross-section and (b) magnified cross-section images of boxes in (a) of a PBIE membrane before heat-treatment. (c) The cross-section and (d) magnified cross-section images of boxes in (c) of a PBIE membrane after heat treatment at 140 °C for 0.5 h. (e) Schematic principle of the inter-action between separator and the electrolyte. Illustrations of (f) the normal operation and (g) the shutdown function of PBIE separators in applications. (a–d) Reprinted with permission from Ref. [164], Copyright 2017, Elsevier. (e–g) Reprinted with permission from Ref. [165], Copyright 2020, Elsevier (color online).

  • Figure 13

    (a) Schematic representation of the coaxial fiber separator shut-down concept for LIBs. (b) DSC curves of the PLA@PBS and Celgard 2325 separator (c) Photographs of the PLA@PBS and Celgard 2325 separators before after treatment at 130 °C for 30 s and 170 °C for 15 min. (d) Thermal stability tests of PP and PVP/TNT separators. (e) Charge curve of the cell with PVP/TNT separators at 60 °C. (f) On/off function of the as prepared PVP/TNT separators. (a–c) Reprinted with permission from Ref. [169], Copyright 2017, Royal Society of Chemistry. (d–f) Reprinted with permission from Ref. [95], Copyright 2018, Elsevier (color online).

  • Figure 14

    (a) Schematic illustration of the 3D printing apparatus, the BN in PVDF-HFP separators and the corresponding composition and structure. (b, c) Temperature distribution images. (d) Room-temperature rate capability at different high current rates and (e) cycling at elevated temperatures of 70 °C at 1 C. (a) Reprinted with permission from Ref. [172], Copyright 2018, Elsevier. (b, c) Reprinted with permission from Ref. [121], Copyright 2015, American Chemical Society. (d, e) Reprinted with permission from Ref. [173], Copyright 2019, Elsevier (color online).

  • Table 1   Summaries of surface modified polyolefin separators for LIBs

    Materials

    Thickness a)–c)(μm)

    Mass loading (mg cm−2)

    Porosity(%)

    Thermal shrinkage (%)

    Ionic conductivity(mS cm−1)

    Ref.

    LLZTO

    PP+5

    0.9

    [15]

    PE–Al2O3

    PE1+6

    0% at 140 °C for 0.5 h

    0.846

    [24]

    N–SiO2

    PE1+5

    10% at 150 °C for 0.5 h

    0.81

    [27]

    LiAl LDH@PP

    PP+19

    [28]

    FCC

    PE1+5

    12.9% at 130 °C for 0.5 h

    1.08

    [32]

    CCS–PI

    PE1+6

    0% at 140 °C for 0.5 h

    0.70

    [35]

    PE–SiO2@PDA

    PE1+6

    44.1

    0% at 220 °C for 0.5 h

    0.981

    [36]

    AlOOH

    PE2+1.15

    <3% at 180 °C for

    0.5 h

    6.56

    [38]

    LSO–SiO2@PE

    PE3+3

    0% at 150 °C for 0.5 h

    0.41

    [39]

    PVDF–HFP/colloidal–TiO2

    PP+15

    57

    4.8% at 150 °C for 1 h

    0.49

    [40]

    PE–BN/PVDF–HFP

    40

    50.8

    6.6% at 140 °C for 1 h

    0.44

    [41]

    TiO2–Kynar

    1.8

    36% at 160 °C for 1 h

    [42]

    APP@SiO2

    PP+40

    50.91

    0% at 180 °C for 0.5 h

    0.84

    [43]

    CCS

    PE1+3

    29.3% at 145 °C for 0.5 h

    1.12

    [44]

    ST

    PE1+9

    18.95% at 150°C for 0.5 h

    0.82

    [45]

    ATP–PVA

    PE1+4

    45.8

    0% at 170 °C for 0.5 h

    0.782

    [46]

    MBO@PP

    PP+6

    0.346

    0.98

    [47]

    BS–Al2O3@PE

    PE2+8

    0% at 200 °C for 0.5 h

    0.683

    [48]

    The thickness of PP is 25 μm. b) The thickness of PE1 is 20 μm. c) The thickness of PE2 and PE3 are 16 μm and 12 μm, respectively.

  • Table 2   Summaries of separators with high heat-resistant skeleton for LIBs

    Materials

    Methods

    Thickness (μm)

    Porosity (%)

    Thermal shrinkage (%)

    Ionic conductivity (mS cm−1)

    Ref.

    SA/ATP

    Phase-inversion

    20

    0% at 250 °C for 2 h

    1.15

    [37]

    CGC

    Filtration

    20

    66

    0% at 200 °C for 30 s

    1.14

    [53]

    PVDF–PET

    Electrospinning

    12

    80

    0% at 135 °C for 1 h

    [60]

    PVDF/CMM/ZSM-5

    Electrospinning

    80

    0% at 150°C for 1 h

    1.72

    [61]

    PAN/SiO2

    Electrospinning

    65

    77

    0% at 150 °C for 0.5 h

    2.60

    [62]

    PPTA@PPS

    Electrospinning

    27–40

    0% at 200 °C for 1 h

    [64]

    PU@GO

    Electrospinning

    100

    90.7

    20% at 170 °C for 1 h

    3.73

    [65]

    Cellulose/PVDF–HFP

    Phase-inversion

    115

    85.3

    0% at 200 °C for 1 h

    1.89

    [66]

    Cellulose/PVDF–HFP

    Electrospinning

    66.36

    0% at 200 °C for 1 h

    6.16

    [67]

    PBI/PI

    Electrospinning

    15

    76–84

    0% at 300 °C for 1 h

    1.70–3.24

    [74]

    PEEK

    Electrospinning

    30

    88

    0% at 150 °C for 0.5 h

    3.81

    [75]

    PET

    Electrospinning

    40

    89

    2.27

    [76]

    FPI

    Electrospinning

    35

    73.4

    1.14

    [78]

    PEI

    Electrospinning

    45

    84.5

    0% at 150 °C for 1 h

    3.41

    [79]

    PMIA/OPS

    Electrospinning

    30–45

    92.87

    0% at 240 °C for 1 h

    1.52

    [82]

    PVDF–HFP–PDA

    Electrospinning

    40

    72.8

    <15% at 170 °C for 0.5 h

    1.40

    [83]

    PMIA@PVDF

    Electrospinning

    45

    72.9

    0% at 180 °C for 2 h

    1.70

    [85]

    SNs

    Filtration

    ~90

    73

    0% at 170 °C for 1 h

    2.71

    [86]

    ECM

    Filtration

    12

    59

    0% at 160 °C for 2 h

    0.26

    [87]

    Al2O3

    Filtration

    ~50

    0% at 150 °C for 1 h

    1.70

    [89]

    CCN

    Filtration

    ~12

    50

    0.45

    [90]

    PVDF

    Electrospinning

    80.3

    1.35

    [91]

    PAN

    Electrospinning

    250

    0.017

    [92]

    TiO2@PI/PVDF–HFP

    Electrospinning

    87

    0% at 180 °C for 0.5 h

    2.36

    [93]

    SiO2–PEI–PU

    Electrospinning

    50

    83.57

    3% at 170 °C for 0.5 h

    3.33

    [94]

    PVP@TiO2

    Electrospinning

    76

    71

    0% at 180 °C for 1 h

    1.41

    [95]

    EMP

    Electrospinning

    60

    0% at 200 °C for 1 h

    1.70

    [96]

    h–BN

    Phase-inversion

    25–30

    59

    0% at 150 °C for 5 min

    0.95

    [97]

    DVB–4VP

    Phase-inversion

    30

    43

    [98]

    PVDF–HFP–ZrO2

    Phase-inversion

    30

    78.38

    0% at 170 °C for 2 h

    0.32

    [99]

    CLN/PPS

    65

    0% at 200 °C for 0.5 h

    0.52

    [100]

  • Table 3   Summaries of Li/Li symmetric cells with different separators

    Separator

    Coin type

    Current density (mA cm−2)

    Cycle time (h)

    Ref.

    CNFs/PE/CNFs

    Li/Li

    0.65

    above 400

    [55]

    Li–MMT/PVDF–HFP

    Li/Li

    0.5

    1

    about 350

    above 200

    [105]

    PDA/POSS–PE

    Li/Li

    2

    about 200

    [110]

    PP@PLLZ

    Li/Li

    1

    above 1000

    [112]

    NH2–MIL-125(Ti)–PP

    Li/Li

    1

    1250

    [115]

    BN–PE

    Li/Cu

    1

    above 200

    [121]

    SrF2–PP

    Li/Li

    Li/Cu

    0.25

    0.25

    350

    1600

    [122]

    PbZr0.52Ti0.48O3–PP

    Li/Li

    2

    above 200

    [123]

    Garlics–PVDF/HFP

    Li/Li

    above 2000

    [124]

    PP/MnCO3

    Li/Li

    1

    2

    3

    above 2000

    above 2000

    above 2000

    [125]

    Si–PP–Si

    Li/Li

    0.5

    above 2000

    [130]

    PEO/ANF

    Li/Li

    0.25

    above 2500

    [131]

    Agarose

    Li/Li

    1

    above 650

    [133]

    HAPs/PVA

    Li/Li

    0.5

    above 600

    [135]

qqqq

Contact and support