logo

SCIENCE CHINA Chemistry, Volume 64 , Issue 7 : 1157-1163(2021) https://doi.org/10.1007/s11426-021-1000-8

Silver-catalyzed unstrained C(CO)–alkyl bond scission via [3+2]/retro-[3+2] cycloaddition of ketones with N-isocyanoiminotriphenylphosphorane

More info
  • ReceivedFeb 6, 2021
  • AcceptedMar 31, 2021
  • PublishedJun 9, 2021

Abstract


Acknowledgment

This work was provided by the National Natural Science Foundation of China (21871043, 21961130376), Department of Science and Technology of Jilin Province (20180101185JC, 20190701012GH, 20200801065GH), and the Fundamental Research Funds for the Central Universities (2412019ZD001, 2412019FZ006).


Interest statement

The authors declare no conflict of interest.


Contributions statement

These authors contributed equally to this work.


Supplement

Supporting Information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Dreis A, Douglas C. Carbon-carbon Bond Activation with 8-Acylquinolines. Berlin: Springer, 2014. 85−110. Google Scholar

[2] Murakami M, Ishida N. J Am Chem Soc, 2016, 138: 13759-13769 CrossRef PubMed Google Scholar

[3] Roque JB, Kuroda Y, Göttemann LT, Sarpong R. Science, 2018, 361: 171-174 CrossRef PubMed ADS Google Scholar

[4] Roque JB, Kuroda Y, Göttemann LT, Sarpong R. Nature, 2018, 564: 244-248 CrossRef PubMed ADS Google Scholar

[5] Sivaguru P, Wang Z, Zanoni G, Bi X. Chem Soc Rev, 2019, 48: 2615-2656 CrossRef PubMed Google Scholar

[6] Morcillo SP. Angew Chem Int Ed, 2019, 58: 14044-14054 CrossRef PubMed Google Scholar

[7] Candeias NR, Paterna R, Gois PMP. Chem Rev, 2016, 116: 2937-2981 CrossRef PubMed Google Scholar

[8] Morris RH. Chem Soc Rev, 2009, 38: 2282-2291 CrossRef PubMed Google Scholar

[9] Huang Z, Lim HN, Mo F, Young MC, Dong G. Chem Soc Rev, 2015, 44: 7764-7786 CrossRef PubMed Google Scholar

[10] Murakami M, Amii H, Ito Y. Nature, 1994, 370: 540-541 CrossRef ADS Google Scholar

[11] Zeng R, Dong G. J Am Chem Soc, 2015, 137: 1408-1411 CrossRef PubMed Google Scholar

[12] Wang J, Chen W, Zuo S, Liu L, Zhang X, Wang J. Angew Chem Int Ed, 2012, 51: 12334-12338 CrossRef PubMed Google Scholar

[13] Lei ZQ, Pan F, Li H, Li Y, Zhang XS, Chen K, Wang X, Li YX, Sun J, Shi ZJ. J Am Chem Soc, 2015, 137: 5012-5020 CrossRef PubMed Google Scholar

[14] Xia Y, Lu G, Liu P, Dong G. Nature, 2016, 539: 546-550 CrossRef PubMed Google Scholar

[15] Li H, Ma B, Liu QS, Wang ML, Wang ZY, Xu H, Li LJ, Wang X, Dai HX. Angew Chem Int Ed, 2020, 59: 14388-14393 CrossRef PubMed Google Scholar

[16] Xu Y, Qi X, Zheng P, Berti CC, Liu P, Dong G. Nature, 2019, 567: 373-378 CrossRef PubMed ADS Google Scholar

[17] Song F, Gou T, Wang BQ, Shi ZJ. Chem Soc Rev, 2018, 47: 7078-7115 CrossRef PubMed Google Scholar

[18] Deng L, Dong G. Trends Chem, 2020, 2: 183-198 CrossRef Google Scholar

[19] Cao L, Ding J, Gao M, Wang Z, Li J, Wu A. Org Lett, 2009, 11: 3810-3813 CrossRef PubMed Google Scholar

[20] Liu M, Zhang Z, Yan J, Liu S, Liu H, Liu Z, Wang W, He Z, Han B. Chem, 2020, 6: 3288-3296 CrossRef Google Scholar

[21] Song ZL, Fan CA, Tu YQ. Chem Rev, 2011, 111: 7523-7556 CrossRef PubMed Google Scholar

[22] He C, Guo S, Huang L, Lei A. J Am Chem Soc, 2010, 132: 8273-8275 CrossRef PubMed Google Scholar

[23] Grenning AJ, Tunge JA. J Am Chem Soc, 2011, 133: 14785-14794 CrossRef PubMed Google Scholar

[24] Zhang C, Feng P, Jiao N. J Am Chem Soc, 2013, 135: 15257-15262 CrossRef PubMed Google Scholar

[25] Xing Q, Li P, Lv H, Lang R, Xia C, Li F. Chem Commun, 2014, 50: 12181-12184 CrossRef PubMed Google Scholar

[26] Li L, Huang W, Chen L, Dong J, Ma X, Peng Y. Angew Chem Int Ed, 2017, 56: 10539-10544 CrossRef PubMed Google Scholar

[27] Ba D, Wen S, Tian Q, Chen Y, Lv W, Cheng G. Nat Commun, 2020, 11: 4219 CrossRef PubMed ADS Google Scholar

[28] Chen Y, Du J, Zuo Z. Chem, 2019, 6: 266-279 CrossRef Google Scholar

[29] Aguilar D, Contel M, Navarro R, Soler T, Urriolabeitia EP. J Organomet Chem, 2009, 694: 486-493 CrossRef Google Scholar

[30] Kilpin KJ, Linklater RA, Henderson W, Nicholson BK. Inorg Chim Acta, 2010, 363: 1021-1030 CrossRef Google Scholar

[31] García-Álvarez J, García-Garrido SE, Cadierno V. J Organomet Chem, 2014, 751: 792-808 CrossRef Google Scholar

[32] Arigela RK, Kumar R, Joshi T, Mahar R, Kundu B. RSC Adv, 2014, 4: 57749-57753 CrossRef ADS Google Scholar

[33] Kumar R, Arigela RK, Kundu B. Chem Eur J, 2015, 21: 11807-11812 CrossRef PubMed Google Scholar

[34] Briones JF, Davies HML. J Am Chem Soc, 2013, 135: 13314-13317 CrossRef PubMed Google Scholar

[35] Deng Y, Massey LA, Rodriguez Núñez YA, Arman H, Doyle MP. Angew Chem Int Ed, 2017, 56: 12292-12296 CrossRef PubMed Google Scholar

[36] Shoji T, Sugiyama S, Kobayashi Y, Yamazaki A, Ariga Y, Katoh R, Wakui H, Yasunami M, Ito S. Chem Commun, 2020, 56: 1485-1488 CrossRef PubMed Google Scholar

[37] Liu Z, Sivaguru P, Zanoni G, Anderson EA, Bi X. Angew Chem Int Ed, 2018, 57: 8927-8931 CrossRef PubMed Google Scholar

[38] Yao Q, Kong L, Wang M, Yuan Y, Sun R, Li Y. Org Lett, 2018, 20: 1744-1747 CrossRef PubMed Google Scholar

[39] Wang Z, Bi X, Liao P, Zhang R, Liang Y, Dong D. Chem Commun, 2012, 48: 7076-7078 CrossRef PubMed Google Scholar

[40] Wang Z, Bi X, Liao P, Liu X, Dong D. Chem Commun, 2013, 49: 1309-1311 CrossRef PubMed Google Scholar

[41] Shen B, Liu W, Cao W, Liu X, Feng X. Org Lett, 2019, 21: 4713-4716 CrossRef PubMed Google Scholar

[42] Džambaski Z, Marković R, Kleinpeter E, Baranac-Stojanović M. Tetrahedron, 2013, 69: 6436-6447 CrossRef Google Scholar

[43] Jain AK, Vaidya A, Ravichandran V, Kashaw SK, Agrawal RK. Bioorg Med Chem, 2012, 20: 3378-3395 CrossRef PubMed Google Scholar

[44] Simón L, Paton RS. J Am Chem Soc, 2018, 140: 5412-5420 CrossRef PubMed Google Scholar

[45] Bell A, Edwards DA. J Chem Soc Dalton Trans, 1984, 7: 1317-1321 CrossRef Google Scholar

[46] Wang H, Mi P, Zhao W, Kumar R, Bi X. Org Lett, 2017, 19: 5613-5616 CrossRef PubMed Google Scholar

[47] Yi F, Zhao W, Wang Z, Bi X. Org Lett, 2019, 21: 3158-3161 CrossRef PubMed Google Scholar

[48] Chen L, Cao S, Zhang J, Wang Z. Tetrahedron Lett, 2019, 60: 1678-1681 CrossRef Google Scholar

[49] Novikov AS, Kuznetsov ML, Pombeiro AJL. Chem Eur J, 2013, 19: 2874-2888 CrossRef PubMed Google Scholar

[50] Kuznetsov ML, Kukushkin VY. Dalton Trans, 2017, 46: 786-802 CrossRef PubMed Google Scholar

  • Figure 1

    Computational studies of the C(CO)–alkyl bond scission of ketone K1. The calculations were performed at the M06/SDD-6-311+G(d,p)/SMD (tetrahydrofuran)//B3LYP/SDD-6-31G(d) level of theory (color online).

  • Scheme 1

    Strategies for unstrained C(CO)–alkyl bond scission via tertiary alcohol intermediates (color online).

  • Scheme 2

    Scope of ketones (color online).

  • Scheme 3

    Mechanism investigation of the reaction (color online).

  • Table 1   Optimization of reaction conditions a)

    Entry

    Variations from standard condition

    Yield (%)

    I1

    N1

    1

    None

    87

    89

    2

    Without Ag2CO3

    0

    0

    3

    AgF instead of Ag2CO3

    Trace

    Trace

    4

    AgOAc instead of Ag2CO3

    9

    10

    5

    AgOTf instead of Ag2CO3

    11

    13

    6

    Cu(OAc)2 instead of Ag2CO3

    0

    0

    7

    PdCl2 instead of Ag2CO3

    0

    0

    8

    RhCl(PPh3)3 instead of Ag2CO3

    0

    0

    9

    ZnCl2 instead of Ag2CO3

    0

    0

    10

    La(OTf)3 instead of Ag2CO3

    0

    0

    11

    Sc(OTf)3 instead of Ag2CO3

    0

    0

    12

    DMF instead of THF

    55

    57

    13

    1,4-Dioxane instead of THF

    82

    88

    14

    MeCN instead of THF

    76

    79

    15

    CH3CH2OH instead of THF

    0

    0

    Reactions were carried out with K1 (0.5 mmol), N-isocyanoiminotriphenylphosphorane (1.25 mmol), Ag2CO3(0.05 mmol), THF (3 mL), 60 °C, N2, 5 h. The yields are isolated yields.

qqqq

Contact and support