logo

Leaf-inspired design of mesoporous Sb2S3/N-doped Ti3C2Tx composite towards fast sodium storage

More info
  • ReceivedDec 24, 2020
  • AcceptedJan 15, 2021
  • PublishedMar 12, 2021

Abstract


Funding

the Shuguang Program from Shanghai Education Development Foundation and Shanghai Municipal Education Commission(18SG035)

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials

Donghua University(KF2015)


Acknowledgment

This work was supported by the Shuguang Program from Shanghai Education Development Foundation and Shanghai Municipal Education Commission (18SG035) and State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University (KF2015). Dr. Q. Zhang thanks the support by the National Natural Science Foundation of China (52072323, 51872098).


Interest statement

The authors declare no conflict of interest.


Supplementary data

Supporting Information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Yu D, Goh K, Wang H, Wei L, Jiang W, Zhang Q, Dai L, Chen Y. Nat Nanotech, 2014, 9555-562 CrossRef ADS Google Scholar

[2] Xu G, Nie P, Dou H, Ding B, Li L, Zhang X. Mater Today, 2017, 20191-209 CrossRef Google Scholar

[3] McAdon MH, Goddard William A. I. J Chem Phys, 1988, 88277-302 CrossRef ADS Google Scholar

[4] Li L, Zheng Y, Zhang S, Yang J, Shao Z, Guo Z. Energy Environ Sci, 2018, 112310-2340 CrossRef Google Scholar

[5] Hwang SM, Kim J, Kim Y, Kim Y. J Mater Chem A, 2016, 417946-17951 CrossRef Google Scholar

[6] Geng H, Peng Y, Qu L, Zhang H, Wu M. Adv Energy Mater, 2020, 101903030 CrossRef Google Scholar

[7] He H, Gan Q, Wang H, Xu GL, Zhang X, Huang D, Fu F, Tang Y, Amine K, Shao M. Nano Energy, 2018, 44217-227 CrossRef Google Scholar

[8] Lei Z, Xu L, Jiao Y, Du A, Zhang Y, Zhang H. Small, 2018, 141704410 CrossRef Google Scholar

[9] Yousaf M, Chen Y, Tabassum H, Wang Z, Wang Y, Abid AY, Mahmood A, Mahmood N, Guo S, Han RPS, Gao P. Adv Sci, 2020, 71902907 CrossRef Google Scholar

[10] Sun M, Wang Z, Ni J, Li L. Adv Funct Mater, 2020, 301910043 CrossRef Google Scholar

[11] Liu Y, Yang C, Zhang Q, Liu M. Energy Storage Mater, 2019, 2266-95 CrossRef Google Scholar

[12] Zhang Y, Zhan R, Xu Q, Liu H, Tao M, Luo Y, Bao S, Li C, Xu M. Chem Eng J, 2019, 357220-225 CrossRef Google Scholar

[13] Zuo X, Chang K, Zhao J, Xie Z, Tang H, Li B, Chang Z. J Mater Chem A, 2016, 451-58 CrossRef Google Scholar

[14] Wang T, Shen D, Liu H, Chen H, Liu Q, Lu B. ACS Appl Mater Interfaces, 2020, 1257907-57915 CrossRef Google Scholar

[15] Zhong W, Tao M, Tang W, Gao W, Yang T, Zhang Y, Zhan R, Bao SJ, Xu M. Chem Eng J, 2019, 378122209 CrossRef Google Scholar

[16] Xiong X, Wang G, Lin Y, Wang Y, Ou X, Zheng F, Yang C, Wang JH, Liu M. ACS Nano, 2016, 1010953-10959 CrossRef Google Scholar

[17] Ding J, Tang C, Zhu G, He F, Du A, Wu M, Zhang H. Mater Chem Front, 2021, 5825-833 CrossRef Google Scholar

[18] Sham LJ, Schlüter M. Phys Rev Lett, 1983, 511888-1891 CrossRef ADS Google Scholar

[19] Kresse G, Furthmüller J. Phys Rev B, 1996, 5411169-11186 CrossRef ADS Google Scholar

[20] Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 773865-3868 CrossRef ADS Google Scholar

[21] Chen X, Zhang X, Shi C, Li X, Qian Y A. Solid State Commun, 2005, 134613-615 CrossRef Google Scholar

[22] Er D, Li J, Naguib M, Gogotsi Y, Shenoy VB. ACS Appl Mater Interfaces, 2014, 611173-11179 CrossRef Google Scholar

[23] Xia M, Chen B, Gu F, Zu L, Xu M, Feng Y, Wang Z, Zhang H, Zhang C, Yang J. ACS Nano, 2020, 145111-5120 CrossRef Google Scholar

[24] Wen S, Zhao J, Zhao Y, Xu T, Xu J. Chem Phys Lett, 2019, 716171-176 CrossRef ADS Google Scholar

[25] Wang S, Liu S, Li X, Li C, Zang R, Man Z, Wu Y, Li P, Wang G. Chem Eur J, 2018, 243873-3881 CrossRef Google Scholar

[26] Bag S, Roy A, Mitra S. Chem Select, 2019, 46679-6686 CrossRef Google Scholar

[27] Ramalingam V, Varadhan P, Fu H, Kim H, Zhang D, Chen S, Song L, Ma D, Wang Y, Alshareef HN, He J. Adv Mater, 2019, 311903841 CrossRef Google Scholar

[28] Shen L, Zhou X, Zhang X, Zhang Y, Liu Y, Wang W, Si W, Dong X. J Mater Chem A, 2018, 623513-23520 CrossRef Google Scholar

[29] Jiang G, Zheng N, Chen X, Ding G, Li Y, Sun F, Li Y. Chem Eng J, 2019, 3731309-1318 CrossRef Google Scholar

[30] Yan J, Ren CE, Maleski K, Hatter CB, Anasori B, Urbankowski P, Sarycheva A, Gogotsi Y. Adv Funct Mater, 2017, 271701264 CrossRef Google Scholar

[31] Dong Y, Hu M, Zhang Z, Zapien JA, Wang X, Lee JM, Zhang W. ACS Appl Nano Mater, 2019, 21457-1465 CrossRef Google Scholar

[32] Bao W, Liu L, Wang C, Choi S, Wang D, Wang G. Adv Energy Mater, 2018, 81702485 CrossRef Google Scholar

[33] Zhai H, Jiang H, Qian Y, Cai X, Liu H, Qiu Y, Jin M, Xiu F, Liu X, Lai L. Mater Chem Phys, 2020, 240122139 CrossRef Google Scholar

[34] Xie J, Liu L, Xia J, Zhang Y, Li M, Ouyang Y, Nie S, Wang X. Nano-Micro Lett, 2018, 1012 CrossRef ADS Google Scholar

[35] Natu V, Clites M, Pomerantseva E, Barsoum MW. Mater Res Lett, 2018, 6230-235 CrossRef Google Scholar

[36] Choi JH, Ha CW, Choi HY, Shin HC, Park CM, Jo YN, Lee SM. Electrochim Acta, 2016, 210588-595 CrossRef Google Scholar

[37] Zhang Q, Chen H, Luo L, Zhao B, Luo H, Han X, Wang J, Wang C, Yang Y, Zhu T, Liu M. Energy Environ Sci, 2018, 11669-681 CrossRef Google Scholar

[38] Zheng Z, Wu HH, Liu H, Zhang Q, He X, Yu S, Petrova V, Feng J, Kostecki R, Liu P, Peng DL, Liu M, Wang MS. ACS Nano, 2020, 149545-9561 CrossRef Google Scholar

  • Figure 1

    (a) Schematic illustration of the synthetic process of L-Sb2S3/Ti3C2 composite. (b, c) SEM images with different magnifications, (d, e) TEM images (inset of (e) is the digital photo of an elm leaf), (f) HRTEM image, (g) SAED pattern, (h) STEM image of L-Sb2S3/Ti3C2 , and (i–m) EDX elemental mapping of Sb, S, Ti, C and N elements (color online).

  • Figure 2

    (a) N2 adsorption-desorption isotherm and corresponding pore size distribution curve (inset), and (b) XRD pattern of L-Sb2S3/Ti3C2. (c) TGA curves of L-Sb2S3/Ti3C2 and Ti3C2Tx Mxene. (d) XPS survey spectrum of L-Sb2S3/Ti3C2, and high-resolution XPS spectra of (e) Sb 3d, (f) S 2p, (g) Ti 2p, (h) C 1s, and (i) N 1s (color online).

  • Figure 3

    (a) CV curvesat a scan rate of 0.2 mV s−1, and (b) charge-discharge profiles of L-Sb2S3/Ti3C2 electrode at 100 mA g−1. (c) Cycling performances at 100 mA g−1, (d) rate capabilities, (e) capacity retention at different current densities, and (f) electrochemical impedance spectra of L-Sb2S3/Ti3C2, Sb2S3/Ti3C2 and Sb2S3 electrodes (color online).

  • Figure 4

    (a) CV curves of L-Sb2S3/Ti3C2 at various scan rates of 0.2–2 mV s−1. (b) Relationship between the logarithm peak currents and logarithm sweep rates. (c) Capacitive and diffusion-controlled contribution to charge storage at 1.0 mV s−1. (d) The percentages of capacitive and diffusion-controlled capacities at different scan rates of L-Sb2S3/Ti3C2 (color online).

  • Figure 5

    (a) Schematic illustration of the nanobattery setup for in-situ electrochemical sodiation/desodiation process. Time-resolved TEM images of L-Sb2S3/Ti3C2 electrode: (b) before sodiation, (c) during sodiation, (d) after sodiation, (e) after desodiation. Diffraction patterns (f) before sodiation, (g) during sodiation, (h) after sodiation, (i) after desodiation. (j) The statistics graph of long axis length variation. (k) Schematic of microstructural evolution of L-Sb2S3/Ti3C2 electrode (color online).

  • Figure 6

    Charge density difference of Na adsorbed onto (a) Sb2S3, (b) Ti3C2 and (c) Sb2S3-Ti3C2. The blue and yellow areas represent the electron depletion and accumulation, respectively. The adsorption energies for Na+ are listed in each case. (d–f) Corresponding density of states for Na-Sb2S3, Na-Ti3C2 and Na-Sb2S3-Ti3C2 (color online).

qqqq

Contact and support